


Building Recommendation
Engines
 

 

 

 

 

Understand your data and user preferences to make
intelligent, accurate, and profitable decisions
 

 

 

 

Suresh Kumar Gorakala
 

 

 

 

BIRMINGHAM - MUMBAI



Building Recommendation Engines
 

Copyright © 2016 Packt Publishing

 

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

 

First published: December 2016

 

Production reference: 1231216

 

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham 
B3 2PB, UK.
ISBN 978-1-78588-485-6

www.packtpub.com

http://www.packtpub.com


Credits

Author
 
Suresh Kumar Gorakala

Copy Editor
 
Manisha Sinha

Reviewers
 
Vikram Dhillon
 
Vimal Romeo

Project Coordinator
 
Nidhi Joshi
 
 

Commissioning Editor
 
Veena Pagare

Proofreader
 
Safis Editing

Acquisition Editor
 
Tushar Gupta

Indexer
 
Mariammal Chettiyar

Content Development Editor
 
Manthan Raja

Graphics
 
Disha Haria

Technical Editor
 
Dinesh Chaudhary

Production Coordinator
 
Arvindkumar Gupta



About the Author
Suresh Kumar Gorakala is a Data scientist focused on Artificial Intelligence. He has
professional experience close to 10 years, having worked with various global clients across
multiple domains and helped them in solving their business problems using Advanced Big
Data Analytics. He has extensively worked on Recommendation Engines, Natural language
Processing, Advanced Machine Learning, Graph Databases. He previously co-authored
Building a Recommendation System with R for Packt Publishing. He is passionate traveler
and is photographer by hobby.

I would like to thank my wife for putting up with my late-night writing sessions and all
my family members for supporting me over the months. I also give deep thanks and
gratitude to Barathi Ganesh, Raj Deepthi, Harsh and my colleagues who without their
support this book quite possibly would not have happened. I would also like to thank all the
mentors that I’ve had over the years. Without learning from these teachers, there is not a
chance I could be doing what I do today, and it is because of them and others that I may not
have listed here that I feel compelled to pass my knowledge on to those willing to learn. I
would also like to thank all the reviewers and project managers of the book to make it a
reality.



About the Reviewers
Vikram Dhillon is a software developer, a bioinformatics researcher, and a software coach
at the Blackstone LaunchPad in the University of Central Florida. He has been working on
his own startup involving healthcare data security of late. He lives in Orlando and regularly
attends development meetups and hackathons. He enjoys spending his spare time reading
about new technologies, such as the Blockchain and developing tutorials for machine
learning in game design. He has been involved in open-source projects for over five years
and writes about technology and startups at opsbug.com

Vimal Romeo is a data science at Ernst and Young, Rome. He holds a master’s degree in
Big Data Analytics from Luiss Business School, Rome. He also holds an MBA degree from
XIME ,India and a bachelor’s degree in computer science and engineering from CUSAT,
India. He is an author at MilanoR which is a blog related to the R language.

I would like to thank my mom – Mrs Bernadit and my brother - Vibin for their continuous
support. I would also like to thank my friends – Matteo Amadei, Antonella Di Luca, Asish
Mathew and Eleonora Polidoro who supported me during this process. A special thanks to
Nidhi Joshi from Packt Publishing for keeping me motivated during the process.

http://opsbug.com/


www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt






 

 

 

 

 

 

 

 

 

 

 

Love You Mom



Table of Contents
Preface 1

Chapter 1: Introduction to Recommendation Engines 7

Recommendation engine definition 7
Need for recommender systems 10
Big data driving the recommender systems 10
Types of recommender systems 11

Collaborative filtering recommender systems 11
Content-based recommender systems 13
Hybrid recommender systems 14
Context-aware recommender systems 16

Evolution of recommender systems with technology 17
Mahout for scalable recommender systems 17
Apache Spark for scalable real-time recommender systems 18

Neo4j for real-time graph-based recommender systems 20
Summary 22

Chapter 2: Build Your First Recommendation Engine 23

Building our basic recommendation engine 25
Loading and formatting data 25
Calculating similarity between users 29
Predicting the unknown ratings for users 30

Summary 38

Chapter 3: Recommendation Engines Explained 39

Evolution of recommendation engines 40
Nearest neighborhood-based recommendation engines 42

User-based collaborative filtering 44
Item-based collaborative filtering 47
Advantages 49
Disadvantages 50

Content-based recommender systems 50
User profile generation 54
Advantages 56
Disadvantages 56

Context-aware recommender systems 56



[ ii ]

Context definition 58
Pre-filtering approaches 61
Post-filtering approaches 62
Advantages 62
Disadvantages 63

Hybrid recommender systems 63
Weighted method 63
Mixed method 64
Cascade method 64
Feature combination method 64
Advantages 65

Model-based recommender systems 65
Probabilistic approaches 66
Machine learning approaches 66
Mathematical approaches 66
Advantages 67

Summary 67

Chapter 4: Data Mining Techniques Used in Recommendation Engines 68

Neighbourhood-based techniques 69
Euclidean distance 70
Cosine similarity 71
Jaccard similarity 74
Pearson correlation coefficient 75

Mathematic model techniques 78
Matrix factorization 78
Alternating least squares 81
Singular value decomposition 82

Machine learning techniques 84
Linear regression 84
Classification models 86

Linear classification 87
KNN classification 88
Support vector machines 90
Decision trees 93
Ensemble methods 96

Random forests 96
Bagging 97
Boosting 98

Clustering techniques 100
K-means clustering 101



[ iii ]

Dimensionality reduction 103
Principal component analysis 104

Vector space models 108
Term frequency 109
Term frequency inverse document frequency 110

Evaluation techniques 113
Cross-validation 114
Regularization 115

Root-mean-square error (RMSE) 115
Mean absolute error (MAE) 116
Precision and recall 117

Summary 119

Chapter 5: Building Collaborative Filtering Recommendation Engines 120

Installing the recommenderlab package in RStudio 121
Datasets available in the recommenderlab package 122

Exploring the Jester5K dataset 123
Description 123
Usage 123
Format 124
Details 124

Exploring the dataset 126
Exploring the rating values 127

Building user-based collaborative filtering with recommenderlab 128
Preparing training and test data 129
Creating a user-based collaborative model 129
Predictions on the test set 131
Analyzing the dataset 133
Evaluating the recommendation model using the k-cross validation 135
Evaluating user-based collaborative filtering 137

Building an item-based recommender model 141
Building an IBCF recommender model 142
Model evaluation 145
Model accuracy using metrics 147
Model accuracy using plots 148
Parameter tuning for IBCF 151

Collaborative filtering using Python 154
Installing the required packages 155
Data source 155

Data exploration 156
Rating matrix representation 158



[ iv ]

Creating training and test sets 160
The steps for building a UBCF 161
User-based similarity calculation 161
Predicting the unknown ratings for an active user 162

User-based collaborative filtering with the k-nearest neighbors 163
Finding the top-N nearest neighbors 163

Item-based recommendations 165
Evaluating the model 166
The training model for k-nearest neighbors 167
Evaluating the model 167

Summary 168

Chapter 6: Building Personalized Recommendation Engines 169

Personalized recommender systems 170
Content-based recommender systems 170

Building a content-based recommendation system 171
Content-based recommendation using R 172

Dataset description 175
Content-based recommendation using Python 184

Dataset description 186
User activity 189
Item profile generation 193
User profile creation 195

Context-aware recommender systems 199
Building a context-aware recommender systems 200
Context-aware recommendations using R 201

Defining the context 202
Creating context profile 203
Generating context-aware recommendations 205

Summary 207

Chapter 7: Building Real-Time Recommendation Engines with Spark 208

About Spark 2.0 209
Spark architecture 210
Spark components 212
Spark Core 212

Structured data with Spark SQL 212
Streaming analytics with Spark Streaming 213
Machine learning with MLlib 213
Graph computation with GraphX 214

Benefits of Spark 215
Setting up Spark 215



[ v ]

About SparkSession 216
Resilient Distributed Datasets (RDD) 217
About ML Pipelines 218

Collaborative filtering using Alternating Least Square 220
Model based recommender system using pyspark 223
MLlib recommendation engine module 225
The recommendation engine approach 225

Implementation 226
Data loading 226
Data exploration 228
Building the basic recommendation engine 233
Making predictions 234

User-based collaborative filtering 236
Model evaluation 237
Model selection and hyperparameter tuning 238

Cross-Validation 239
CrossValidator 239
Train-Validation Split 239
Setting the ParamMaps/parameters 242
Setting the evaluator object 243

Summary 244

Chapter 8: Building Real-Time Recommendations with Neo4j 245

Discerning different graph databases 246
Labeled property graph 248

Understanding GraphDB core concepts 248
Neo4j 250

Cypher query language 250
Cypher query basics 251

Node syntax 251
Relationship syntax 251
Building your first graph 252

Creating nodes 253
Creating relationships 254
Setting properties to relations 256
Loading data from csv 259

Neo4j Windows installation 261
Installing Neo4j on the Linux platform 263

Downloading Neo4j 263
Setting up Neo4j 264
Starting Neo4j from the command line 264

Building recommendation engines 267



[ vi ]

Loading data into Neo4j 268
Generating recommendations using Neo4j 272
Collaborative filtering using the Euclidean distance 273
Collaborative filtering using Cosine similarity 279

Summary 282

Chapter 9: Building Scalable Recommendation Engines with Mahout 283

Mahout – a general introduction 284
Setting up Mahout 285

The standalone mode – using Mahout as a library 285
Setting Mahout for the distributed mode 293

Core building blocks of Mahout 295
Components of a user-based collaborative recommendation engine 296
Building recommendation engines using Mahout 300
Dataset description 300
User-based collaborative filtering 303

Item-based collaborative filtering 306
Evaluating collaborative filtering 309
Evaluating user-based recommenders 310
Evaluating item-based recommenders 311
SVD recommenders 314
Distributed recommendations using Mahout 315

ALS recommendation on Hadoop 316
The architecture for a scalable system 321
Summary 322

Chapter 10: What Next - The Future of Recommendation Engines 323

Future of recommendation engines 324
Phases of recommendation engines 324

Phase 1 – general recommendation engines 325
Phase 2 – personalized recommender systems 326
Phase 3 – futuristic recommender systems 328

End of search 330
Leaving the Web behind 332
Emerging from the Web 333

Next best actions 334
Use cases to look out for 335

Smart homes 335
Healthcare recommender systems 336
News as recommendations 336

Popular methodologies 337



[ vii ]

Serendipity 337
Temporal aspects of recommendation engines 338

A/B testing 340
Feedback mechanism 341

Summary 341

Index 342



Preface
Building Recommendation Engines is a comprehensive guide for implementing
Recommendation Engines such as collaborative filtering, content based recommendation
engines, context aware recommendation engines using R, Python, Spark, Mahout, Neo4j
technologies. The book covers various recommendation engines widely used across
industries with their implementations. This book also covers a chapter on popular
datamining techniques commonly used in building recommendations and also discuss in
brief about the future of recommendation engines at the end of the book.

What this book covers
Chapter 1, Introduction to Recommendation Engines, will be a refresher to Data Scientists and
an introduction to the beginners of recommendation engines. This chapter introduces
popular recommendation engines that people use in their day-to-day lives. Popular
recommendation engine approaches available along with their pros and cons are covered.

Chapter 2, Build Your First Recommendation Engine, is a short chapter about how to build a
movie recommendation engine to give a head start for us before we take off into the world
of recommendation engines.

Chapter 3, Recommendation Engines Explained, is about different recommendation engine
techniques popularly employed, such as user-based collaborative filtering recommendation
engines, item-based collaborative filtering, content-based recommendation engines, context-
aware recommenders, hybrid recommenders, model-based recommender systems using
Machine Learning models and mathematical models.

Chapter 4, Data Mining Techniques Used in Recommendation Engines, is about various
Machine Learning techniques used in building recommendation engines such as similarity
measures, classification, regression, and dimension reduction techniques. This chapter also
covers evaluation metrics to test the recommendation engine’s predictive power.

Chapter 5, Building Collaborative Filtering Recommendation Engines, is about how to build
user-based collaborative filtering and item-based collaborative filtering in R and Python.
We'll also learn about different libraries available in R and Python that are extensively used
in building recommendation engines.
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Chapter 6, Building Personalized Recommendation Engines, is about how to build personalized
recommendation engines using R and Python and the various libraries used for building
content-based recommender systems and context-aware recommendation engines.

Chapter 7, Building Real-Time Recommendation Engines with Spark, is about the basics of
Spark and MLlib required for building real-time recommender systems.

Chapter 8, Building Real-Time Recommendation Engines with Neo4j, is about the basics of
graphDB and Neo4j concepts and how to build real-time recommender systems using
Neo4j.

Chapter 9, Building Scalable Recommendation Engines with Mahout, is about the basic building
blocks of Hadoop and Mahout required for building scalable recommender systems. It also
covers the architecture we use to build scalable systems and a step-by-step implementation
using Mahout and SVD.

Chapter 10, What Next?, is the final chapter explaining the summary of what we have
learned so far: best practices that are employed in building the decision-making systems
and where the future of the recommender systems are set to move.

What you need for this book
To get started with different implementations of recommendation engines in R, Python,
Spark, Neo4j, Mahout we need the following software:

Chapter
number

Software required (With
version)

Download links to the software OS required

2,4,5 R studio Version 0.99.489
 

h t t p s ://w w w . r s t u d i o . c o m /p r o d u c t s /r s t u d i o
/d o w n l o a d /

WINDOWS 7+/Centos 6

2,4,5 R version 3.2.2 h t t p s ://c r a n . r - p r o j e c t . o r g /b i n /w i n d o w s /b a
s e /

WINDOWS 7+/Centos 6

5,6,7 Anaconda 4.2 for Python 3.5 h t t p s ://w w w . c o n t i n u u m . i o /d o w n l o a d s WINDOWS 7+/Centos 6

8 Neo4j 3.0.6 h t t p s ://n e o 4j . c o m /d o w n l o a d / WINDOWS 7+/Centos 6

7 Spark 2.0
 

h t t p s ://s p a r k . a p a c h e . o r g /d o w n l o a d s . h t m l WINDOWS 7+/Centos 6

9 Hadoop 2.5 -Mahout 0.12 h t t p ://h a d o o p . a p a c h e . o r g /r e l e a s e s . h t m l   
h t t p ://m a h o u t . a p a c h e . o r g /g e n e r a l /d o w n l o a d
s . h t m l

WINDOWS 7+/Centos 6

7,9,8 Java 7/Java 8 h t t p ://w w w . o r a c l e . c o m /t e c h n e t w o r k /j a v a /j a
v a s e /d o w n l o a d s /j d k 7- d o w n l o a d s - 1880260. h t m
l

WINDOWS 7+/Centos 6
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Who this book is for
This book caters to beginners and experienced data scientists looking to understand and
build complex predictive decision-making systems, recommendation engines using R,
Python, Spark, Neo4j, and Hadoop.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

export MAHOUT_HOME = /home/softwares/ apache-mahout-distribution-0.12.2
export MAHOUT_LOCAL = true #for standalone mode
export PATH = $MAHOUT_HOME/bin
export CLASSPATH = $MAHOUT_HOME/lib:$CLASSPATH

 

Any command-line input or output is written as follows:

[cloudera@quickstart ~]$ hadoop fs –ls
Found 1 items
drwxr-xr-x - cloudera cloudera 0 2016-11-14 18:31 mahout

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux
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The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /b u i l d i n g - r e c o m m e n d a t i o n - e n g i n e s . We also have other code bundles from our
rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n l

o a d s /B u i l d i n g R e c o m m e n d a t i o n E n g i n e s _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.
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1
Introduction to

Recommendation Engines
How do we buy things? How do we make decisions in our day-to-day lives? We ask our
friends or relatives for suggestions before making decisions. When it comes to making
decisions online about buying products, we read reviews about the products from
anonymous users, compare the products' specifications with other similar products and
then we make our decisions to buy or not. In an online world, where information is
growing at an exponential rate, looking for valid information will be a challenge. Buying
the confidence of the user for the search results will be a much more challenging task.
Recommender systems come to our rescue to provide relevant and required information.

The popularity of implementing recommendation engines comes as a result of their
successful implementation by big players on the Internet. Some real-world examples
include suggestions for products on Amazon, friends' suggestions on social applications
such as Facebook, Twitter, and LinkedIn, video recommendations on YouTube, news
recommendations on Google News, and so on. These successful implementations of
recommendation engines have shown the way for other areas such as the travel, healthcare,
and banking domains.

Recommendation engine definition
Recommendation engines, a branch of information retrieval and artificial intelligence, are
powerful tools and techniques to analyze huge volumes of data, especially product
information and user information, and then provide relevant suggestions based on data-
mining approaches.
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In technical terms, a recommendation engine problem is to develop a mathematical model or
objective function which can predict how much a user will like an item.

If U = {users}, I = {items} then F = Objective function and measures the usefulness of item I to
user U, given by:

Where R = {recommended items}.

For each user u, we want to choose the item i that maximizes the objective function:

The main goal of recommender systems is to provide relevant suggestions to online users to
make better decisions from many alternatives available over the Web. A better
recommender system is directed more toward personalized recommendations by taking
into consideration the available digital footprint of the user, such as user-demographic
information, transaction details, interaction logs, and information about a product, such as
specifications, feedback from users, comparison with other products, and so on, before
making recommendations:

Pic credits: toptal
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Building a good recommendation engine poses challenges to both the actors of the system,
namely, the consumers and sellers. From a consumer perspective, receiving relevant
suggestions from a trusted source is critical for decision making. So the recommendation
engine needs to build in such a way that it buys the confidence of the consumers. From a
seller perspective, generating relevant recommendations to consumers at a personalized
level is more important. With the rise of online sales, the big players are now collecting
large volumes of transactional interaction logs of users to analyze the user behaviors more
deeply than ever. Also, the need to recommend in real time is adding to the challenge. With
advancements in technology and research, recommendation engines are evolving to
overcome these challenges based on big-data analysis and artificial intelligence. The
following diagram illustrates how organizations employ recommendation engines:
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Need for recommender systems
Given the complexity and challenges in building recommendation engines, a considerable
amount of thought, skill, investment, and technology goes into building recommender
systems. Are they worth such an investment? Let us look at some facts:

Two-thirds of movies watched by Netflix customers are recommended movies
38% of click-through rates on Google News are recommended links
35% of sales at Amazon arise from recommended products
ChoiceStream claims that 28% of people would like to buy more music, if they
find what they like

Big data driving the recommender systems
Of late, recommender systems are successful in impacting our lives in many ways. One
such obvious example of this impact is how our online shopping experience has been
redefined. As we browse through e-commerce sites and purchase products, the underlying
recommendation engines respond immediately, in real time, with various relevant
suggestions to consumers. Regardless of the perspective, from business player or consumer,
recommendation engines have been immensely beneficial. Without a doubt, big data is the
driving force behind recommender systems. A good recommendation engine should be
reliable, scalable, highly available, and be able to provide personalized recommendations,
in real time, to the large user base it contains.

A typical recommendation system cannot do its job efficiently without sufficient data. The
introduction of big data technology enabled companies to capture plenty of user data, such
as past purchases, browsing history, and feedback information, and feed it to the
recommendation engines to generate relevant and effective recommendations in real time.
In short, even the most advanced recommender system cannot be effective without the
supply of big data. The role of big data and improvements in technology, both on the
software and hardware front, goes beyond just supplying massive data. It also provides
meaningful, actionable data fast, and provides the necessary setup to quickly process the
data in real time.

Source:
http://www.kdnuggets.com/2015/10/big-data-recommendation-systems-change-lives.h

tml.

http://www.kdnuggets.com/2015/10/big-data-recommendation-systems-change-lives.html
http://www.kdnuggets.com/2015/10/big-data-recommendation-systems-change-lives.html
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Types of recommender systems
Now that we have defined recommender systems, their objective, usefulness, and the
driving force behind recommender systems, in this section, we introduce different types of
popular recommender systems in use.

Collaborative filtering recommender systems
Collaborative filtering recommender systems are basic forms of recommendation engines.
In this type of recommendation engine, filtering items from a large set of alternatives is 
done collaboratively by users' preferences.

The basic assumption in a collaborative filtering recommender system is that if two users
shared the same interests as each other in the past, they will also have similar tastes in the
future. If, for example, user A and user B have similar movie preferences, and user A
recently watched Titanic, which user B has not yet seen, then the idea is to recommend this
unseen new movie to user B. The movie recommendations on Netflix are one good example
of this type of recommender system.

There are two types of collaborative filtering recommender systems:

User-based collaborative filtering: In user-based collaborative filtering,
recommendations are generated by considering the preferences in the user's
neighborhood. User-based collaborative filtering is done in two steps:

Identify similar users based on similar user preferences
Recommend new items to an active user based on the rating given
by similar users on the items not rated by the active user.

Item-based collaborative filtering: In item-based collaborative filtering, the
recommendations are generated using the neighbourhood of items. Unlike user-
based collaborative filtering, we first find similarities between items and then
recommend non-rated items which are similar to the items the active user has
rated in past. Item-based recommender systems are constructed in two steps:

Calculate the item similarity based on the item preferences
Find the top similar items to the non-rated items by active user and
recommend them

We will learn in depth about these two forms of recommendations in Chapter 3,
Recommendation Engines Explained.
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While building collaborative filtering recommender systems, we will learn about the
following aspects:

How to calculate the similarity between users?
How to calculate the similarity between items?
How recommendations are generated?
How to deal with new items and new users whose data is not known?

The advantage of collaborative filtering systems is that they are simple to implement and
very accurate. However, they have their own set of limitations, such as the Cold Start
problem, which means, collaborative filtering systems fails to recommend to the first-time
users whose information is not available in the system:
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Content-based recommender systems
In collaborative filtering, we consider only user-item-preferences and build the
recommender systems. Though this approach is accurate, it makes more sense if we
consider user properties and item properties while building recommendation engines.
Unlike in collaborative filtering, we use item properties and user preferences to the item
properties while building content-based recommendation engines.

As the name indicates, a content-based recommender system uses the content information
of the items for building the recommendation model. A content recommender system
typically contains a user-profile-generation step, item-profile-generation step- and model-
building step to generate recommendations for an active user. The content-based
recommender system recommends items to users by taking the content or features of items
and user profiles. As an example, if you have searched for videos of Lionel Messi on
YouTube, then the content-based recommender system will learn your preference and
recommend other videos related to Lionel Messi and other videos related to football.

In simpler terms, the system recommends items similar to those that the user has liked in
the past. The similarity of items is calculated based on the features associated with the other
compared items and is matched with the user's historical preferences.

While building a content-based recommendation system, we take into consideration the
following questions:

How do we choose content or features of the products?
How do we create user profiles with preferences similar to that of the product
content?
How do we create similarity between items based on their features?
How do we create and update user profiles continuously?
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The preceding considerations will be explained in Chapter 3, Recommendation Engines
Explained. This technique doesn't take into consideration the user's neighborhood
preferences. Hence, it doesn't require a large user group's preference for items for better
recommendation accuracy. It only considers the user's past preferences and the
properties/features of the items. In Chapter 3, Recommendation Engines Explained, we will
learn about this system in detail, and also its pros and cons:

Hybrid recommender systems
This type of recommendation engine is built by combining various recommender systems
to build a more robust system. By combining various recommender systems, we can replace
the disadvantages of one system with the advantages of another system and thus build a
more robust system. For example, by combining collaborative filtering methods, where the
model fails when new items don't have ratings, with content-based systems, where feature
information about the items is available, new items can be recommended more accurately
and efficiently.

For example, if you are a frequent reader of news on Google News, the underlying
recommendation engine recommends news articles to you by combining popular news
articles read by people similar to you and using your personal preferences, calculated using
your previous click information. With this type of recommendation system, collaborative
filtering recommendations are combined with content-based recommendations before
pushing recommendations.
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Before building a hybrid model, we should consider the following questions:

What recommender techniques should be combined to achieve the business
solution?
How should we combine various techniques and their results for better
predictions?

The advantage of hybrid recommendation engines is that this approach will increase the
efficiency of recommendations compared to the individual recommendation techniques.
This approach also suggests a good mix of recommendations to the users, both at the
personalized level and at the neighborhood level. In Chapter 3, Recommendation Engines
Explained, we will learn more about hybrid recommendations:
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Context-aware recommender systems
Personalized recommender systems, such as content-based recommender systems, are
inefficient; they fail to suggest recommendations with respect to context. For example,
assume a lady is very fond of ice-cream. Also assume that this lady goes to a cold place.
Now there is high chance that a personalized recommender system suggests a popular ice-
cream brand. Now let us ask our self a question: is it the right thing to suggest an ice-cream
to a person in a cold place? Rather, it makes sense to suggest a coffee. This type of
recommendation, which is personalized and context-aware is called a context-aware
recommender systems. In the preceding example, place is the context.

User preferences may differ with the context, such as time of day, season, mood, place,
location, options offered by the system, and so on. A person at a different location at a
different time with different people may need different things. A context-aware
recommender system takes the context into account before computing or serving
recommendations. This recommender system caters for the different needs of people
differently in different contexts.

Before building a context-aware model, we should consider the following questions:

How should we define the contexts to be used in the recommender system?
What techniques should be used to build recommendations to achieve the
business solution?
How do we extract context the preferences of the users with respect to the
products?
What techniques should we use to combine the context preferences with user-
profile preferences to generate recommendations?
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The preceding image shows how different people, at different times and places, and with
different company, need different dress recommendations.

Evolution of recommender systems with
technology
With the advancements in technology, research, and infrastructure, recommender systems
have been evolving rapidly. Recommender systems are moving away from simple
similarity-measure-based approaches, to machine-learning approaches, to very advanced
approaches such as deep learning. From a business angle, both customers and organizations
are looking toward more personalized recommendations to be catered for immediately.
Building personalized recommenders to cater to the large user base and products, we need
sophisticated systems, which can scale easily and respond fast. The following are the types
of recommendations that can help solve this challenge.

Mahout for scalable recommender systems
As stated earlier, big data primarily drives recommender systems. The big-data platforms
enabled researchers to access large datasets and analyze data at the individual level, paving
paths for building personalized recommender systems. With increase in Internet usage and
a constant supply of data, efficient recommenders not only require huge data, but also need
infrastructure which can scale and have minimum downtime. To realize this, big-data
technology such as the Apache Hadoop ecosystem provided the infrastructure and platform
to supply large data. To build recommendation systems on this huge supply of data,
Mahout, a machine-learning library built on the Hadoop platform enables us to build
scalable recommender systems. Mahout provides infrastructure to build, evaluate, and tune
the different types of recommendation-engine algorithms. Since Hadoop is designed for
offline batch processing, we can build offline recommender systems, which are scalable. In
Chapter 9, Building Scalable Recommendation Engines with Mahout, we further see how to
build scalable recommendation engines using Mahout.
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The following figure displays how a scalable recommender system can be designed using
Mahout:

Apache Spark for scalable real-time
recommender systems
We have seen many times, on any of the e-commerce sites, the You may also like feature. This
is a deceptively simple phrase that encapsulates a new era in customer relationship
management delivered in real time. Business organizations started investing in such
systems, which can generate recommendations personalized to the customers and can
deliver them in real time. Building such a system will not only give good returns on
investment but also, efficient systems will buy the confidence of the users. Building a
scalable real-time recommender system will not only capture users' purchase history,
product information, user preferences, and extract patterns and recommend products, but
will also respond instantly based on user online interactions and multi-criteria search
preferences.



Introduction to Recommendation Engines

[ 19 ]

This ability makes compelling suggestions requiring a new generation of technology. This
technology has to consider large databases of users' previous purchasing history, their
preferences, and online interaction information such as in-page navigation data and multi-
criteria searches, and then analyzes all this information in real time and responds accurately
according to the current and long-term needs of the users. In this book, we have considered
in-memory and graph-based systems, which are capable of handling large-scale, real-time
recommender systems.

Most popular recommendation engine collaborative filtering requires considering the
entirety of users and product information while generating recommendations. Assume a
scenario where we have 1 million user ratings on 10,000 products. In order to build a system
to handle such heavy computations and respond online, we require a system that is big-
data compatible and processes data in-memory. The key technology in enabling scalable,
real-time recommendations is Apache Spark Streaming, a technology that leverages
scalability of big data and generates recommendations in real time, and processes data in-
memory:
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Neo4j for real-time graph-based recommender systems
Graph databases have revolutionized the way people discover new products, information,
and so on. In the human mind, we remember people, things, places, and so on, as graphs,
relations, and networks. When we try to fetch information from these networks, we directly
go to a required connection or graph and fetch information accurately. In a similar fashion,
graph databases allow us to store user and product information in graphs as nodes and
edges (relations). Searching in a graph database is fast. In recent times, recommender
systems powered by graph databases have allowed organizations to build suggestions
which are personalized and accurate in real time.

One of the key technologies enabling real-time recommendations using graph databases is
Neo4j, a kind of NoSQL graph database that can easily outperform any other relational and
NoSQL system in providing customer insights and product trends.

A NoSQL database, popularly known as not only SQL, provides a new way of storing and
managing data other than in relational format that is row and columns such as columnar,
graph, key-value pair store of data. This new way of storing and managing data enables us
to build scalable and real-time systems.

A graph database mainly consists of nodes and edges, wherein nodes represent the entities
and edges the relations between them. The edges are directed lines or arrows that connect
the nodes. In the preceding image, the circles are the nodes, which represent the entities,
and the lines connecting the nodes are called edges, which represent relationships. The
orientation of arrows follows the flow of information. By presenting all nodes and links of
the graph, it helps users to have a global view of the structure.

The following image shows user-movie-rating information representation in graph form.
Green and red circles indicate nodes representing users and movies, respectively. The
ratings given by users to movies are represented as edges showing the relationship between
users and movies. Each node and relation may contain properties to store further details of
the data.
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On this graph representation, we apply concepts of graph theory to generate
recommendations in real time, as the retrieval and searching is very fast. In Chapter 8,
Building Real Time Recommendation Engines with Neo4j, we deal with building real-time
recommendation engines using Neo4j:
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Summary
In this chapter, we got introduced to various types of popular recommendation engines
such as collaborative filtering, content-based recommendation engines, hybrid
recommenders, context-aware systems, scalable recommenders, and graph-based, real-time
recommenders.

We also learned how big data is fuelling the rise of recommendation engines and some real-
world use-cases employed by major IT giants. In Chapter 3, Recommendation Engines
Explained, we will learn more about these recommendations in detail. In Chapter 2, Build
Your First Recommendation Engine, we learn how to build a basic recommendation engine
using R.



2
Build Your First

Recommendation Engine
In the previous chapter, we had an introduction to various types of recommendation
engines, which we will be building in the subsequent chapters. Now that we have got
introduced to recommendation engines, let's build our first recommendation engine using
R.

Before we proceed further for implementation, let's have a brief discussion about the
required software and packages for building our first recommendation using R.

For this exercise, we have used the R 3.2.2 version and RStudio 0.99 or above. For
installation and setup of R and RStudio, please refer to the software and hardware list
section of the book.

The R packages we have used for this exercise are as follows:

dplyr

data.table

reshape2

Installing a R package is given by the following codes:

#for online installation
Install.packages("dplyr")

For offline installation, first download the required gz file from CRAN Repository to a local
folder, and then execute the following code:

install.packages("path/to/file/dplyr_0.5.0.tar.gz", repos=NULL)

https://cran.r-project.org/src/contrib/dplyr_0.5.0.tar.gz
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The recommendation engine we are going to build is based on the collaborative filtering
approach. As explained in Chapter 1, Introduction to Recommendation Engines, is based on
the user's neighbourhood, as explained in the following figure:
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Building our basic recommendation engine
The steps to build our basic recommendation engine are as follows:

Loading and formatting data.1.
Calculating similarity between users.2.
Predicting the unknown ratings for users.3.
Recommending items to users based on user-similarity score.4.

These steps can be seen in the following diagram:

Loading and formatting data
The dataset used for this chapter can be downloaded from h t t p s ://r a w . g i t h u b u s e r c o n t e

n t . c o m /s u r e s h g o r a k a l a /R e c o m m e n d e r S y s t e m s _ R /m a s t e r /m o v i e _ r a t i n g . c s v .
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The dataset chosen for the chapter is a movie-rating dataset containing ratings for six
movies given by six users on a scale of 0 to 5:
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Before we load the data, let me explain a few things about the data. The dataset chosen is a
comma-separated file having movie ratings from 1 to 5 in steps of 5 given by six users on six
movies. Not all critics have rated all the titles in the dataset.

Our objective is to build a recommendation engine that recommends unknown movies to
users based on the ratings of similar users.

Loading the data from a csv file in R is given by read.csv():

ratings = read.csv("~/movie_rating.csv")

The first six rows of the data can be viewed using head(), an inbuilt function in R:

head(ratings)

To see the dimensions of the dataset, we use dim(), an inbuilt function in R:

dim(ratings)
[1] 31  3

To see the structure of the input data, we may use the str() function in R, as follows:

Str(ratings)

We see that we have a dataset containing 31 observations and three variables such as critic,
title, and rating. Also, we see that six critics have rated six movies. The ratings are between
1 and 5.
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To see the levels of the attributes of a variable, we use levels() in R:

To build a recommender system, we would be requiring a matrix where rows contain users,
columns contain items, and the cells contain the ratings given by users to the items.

The next step is to arrange the data in a format that is useful to build the recommendation
engine. The current data contains a row containing critic, title, and rating. This has to be
converted to matrix format containing critics as rows, title as columns, and ratings as the
cell values.

The following code helps us achieve this. We use the acast() function available in
reshape2 package. The reshape2 package is a R package popularly used for restructuring
data. The acast() function in reshape2 package casts a data frame to matrix
representation.

The cast function takes the ratings dataset as input, title as row attribute, critic as
column attribute, and rating as value.

#data processing and formatting
movie_ratings = as.data.frame(acast(ratings, title~critic,
    value.var="rating"))

The transformed data can be viewed as follows:

View(movie_ratings)
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From the formatted data, we see that Toby has rated three movies. Lisa Rose, Mick
LaSalle, and Gene Seymour have rated all the movies. Claudia Puig, and Jack
Matthews have not rated one movie each. Here, let's revisit our objective, which is defined
at the beginning of the section: we shall recommend to critics movies that they have not
rated, based on similar users. For example, we shall recommend movies to Toby based on
the ratings provided by other critics similar to Toby.

Calculating similarity between users
This is a very important step as we need to recommend the previously unseen movies based
on the ratings given to these movies by other similar critics. There are various similarity
measures, such as Euclidean distance, cosine distance, Pearson coefficient, Jaccard distance,
and so on. The details of these measures or similarity metrics are explained in detail in the
Chapter 4, Data Mining Techniques Used in Recommendation Engines.

In this chapter, we'll use correlation as the similarity measure between users. The reason for
choosing correlation is that correlation represents the association two items or how closely
two item vectors covary or are related to each other. So for this chapter, we have chosen the
correlation value as the measure of similarity between two items in a matrix.

In R, we have the cor() function to find correlation between variables in a dataset. The
following code calculates the similarity between critics:

While finding similarity between Toby and other critics,use the use="complete.obs"
attribute, of the cor() function to consider complete observations:

sim_users = cor(movie_ratings[,1:6],use="complete.obs")
View(sim_users)
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From the preceding code, we observe that Lisa Rose is very similar to Toby with 0.99
and Mick LaSalle with 0.92.

Predicting the unknown ratings for users
In this section, we will predict the unrated movies of Toby using the ratings given by
similar users. The following are the steps to achieve this:

Extract the titles which Toby has not rated.1.
For these titles, separate all the ratings given by other critics.2.
Multiply the ratings given for these movies by all critics other than Toby with the3.
similarity values of critics with Toby.
Sum up the total ratings for each movie, and divide this summed up value with4.
the sum of similarity critic values.

Before we go into the code, let's learn a bit about the data.table package and the setDT()
method we have used in the following code.

Data.table is a popular R package that provides an enhanced data.frame version, which
allows us to do manipulations on data with lightening speed. Another advantage of the
data.table package is that it can handle very large datasets up to 100 GB data in RAM.
Various operations, such as creating a data table, an enhanced version of data frame, sub-
setting data, manipulating the data, joins etc.

For this exercise, we have made use of the setDT() method available in data.table. The
set* functions in data.table help manipulate input data by reference instead of value,
that is, while transforming data, there won't be any physical copy of the data.

The preceding explanation is written as code, as follows:

Extract the titles which Toby has not rated. We have used the setDT() function1.
available in the data.table package to extract the non-rated titles and create a
data.table and data.frame object, rating_critic. The setDT() method
extracts column values and corresponding row names and creates a two-
dimension data.frame or data.table object:

        rating_critic  = setDT(movie_ratings[colnames(movie_ratings)
            [6]],keep.rownames = TRUE)[]
        names(rating_critic) = c('title','rating')
        View(rating_critic)
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Isolate the non-rated movies from the aforementioned list:2.

        titles_na_critic =
            rating_critic$title[is.na(rating_critic$rating)]
        titles_na_critic

Please note that the is.na() function is used to filter out NA values.

Take the ratings based on the original dataset and subset all the critics
who have rated the aforementioned shown movies.
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In the following code, %in% acts as the where condition in SQL:

        ratings_t =ratings[ratings$title %in% titles_na_critic,]
        View(ratings_t)
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To the aforementioned data frame, now let's add a new variable,
similarity, using the similarity values of each critic w.r.t Toby:

        x = (setDT(data.frame(sim_users[,6]),keep.rownames = TRUE)[])
        names(x) = c('critic','similarity')
        ratings_t =  merge(x = ratings_t, y = x, by = "critic", all.x =
            TRUE)
        View(ratings_t)
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Multiply rating with similarity value, and add the resultant as a new variable,3.
sim_rating:

        ratings_t$sim_rating = ratings_t$rating*ratings_t$similarity
            ratings_t

Sum up all the rating values for each title calculated in the preceding step, and4.
then divide this summed up value for each title with the sum of similarity values
of each critic, that is, for the Just My Luck title, the rating for Toby is calculated
by summing up all the sim_rating values for Just My Luck divided by the
sum of similarity values of all the critics who have rated the Just My Luck title:

(2.6802154+0.5718696+2.9737221+1.8489469)/(0.8934051+0.3812464+0.9912
407+0.9244735) = 2.530981
The preceding calculation for all the titles are done in R using two
functions available in the dplyr package, group_by(), and
summarise().
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The dplyr package is an R package used for data manipulations. This
package is very useful, like data.table; it comes in very handy for
exploratory analysis and data manipulation.
The summarise() function is available in the dply package for
summarizing results. The group_by() function is used to group data by
one or more variables.
The %>% operator available in the dply package is a very handy function
used to group multiple codes together. In the following code, we are
using the %>% code to group the group_by() and summarise()
functions together and compute the results without writing intermediate
results:

        result = ratings_t %>% group_by(title) %>%
            summarise(sum(sim_rating)/sum(similarity))
        result
        Source: local data frame [3 x 2]
        title sum(sim_rating)/sum(similarity)
        (fctr) (dbl)
        1 Just My Luck 2.530981
        2 Lady in the Water 2.832550
        3 The Night Listener 3.347790

You can see the calculated or predicted ratings for all the three titles not
rated by Toby. Now you can recommend these new titles, the ratings for
which are greater than the average ratings given by Toby. For example,
the mean rating given by Toby to three titles is given by the following
code:

        mean(rating_critic$rating,na.rm = T)
        3.166667

Now that we know the average rating by Toby is 3.16, we can
recommend movies with ratings greater than the mean values. From the
predicted values, we can recommend the movie The Night Listener,
which is above his mean value.
The aforementioned generating recommendations for all the users can
be easily extended by writing a function as follows:

        generateRecommendations <- function(userId){
        rating_critic = setDT(movie_ratings[colnames(movie_ratings)
            [userId]],keep.rownames = TRUE)[]
        names(rating_critic) = c('title','rating')
        titles_na_critic =
            rating_critic$title[is.na(rating_critic$rating)]
        ratings_t =ratings[ratings$title %in% titles_na_critic,]
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        #add similarity values for each user as new variable
        x = (setDT(data.frame(sim_users[,userId]),keep.rownames = TRUE)
            [])
        names(x) = c('critic','similarity')
        ratings_t = merge(x = ratings_t, y = x, by = "critic", all.x =
            TRUE)
        #mutiply rating with similarity values
        ratings_t$sim_rating = ratings_t$rating*ratings_t$similarity
        #predicting the non rated titles
        result = ratings_t %>% group_by(title) %>%
            summarise(sum(sim_rating)/sum(similarity))
        return(result)
        }

Making predictions now for each of the users will be very easy and is
shown next:
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Kudos to us for having built our first and basic recommender system. Let's put together the
entire code we have done till now. The following is the full version of the code:

library(reshape2)
library(data.table)
library(dplyr)
#data loading
ratings = read.csv("C:/Users/Suresh/Desktop/movie_rating.csv")
#data processing and formatting
movie_ratings = as.data.frame(acast(ratings, title~critic,
value.var="rating"))
#similarity calculation
sim_users = cor(movie_ratings[,1:6],use="complete.obs")
#sim_users[colnames(sim_users) == 'Toby']
sim_users[,6]
#predicting the unknown values
#seperating the non rated movies of Toby
rating_critic =
setDT(movie_ratings[colnames(movie_ratings)[6]],keep.rownames = TRUE)[]
names(rating_critic) = c('title','rating')
titles_na_critic = rating_critic$title[is.na(rating_critic$rating)]
ratings_t =ratings[ratings$title %in% titles_na_critic,]
#add similarity values for each user as new variable
x = (setDT(data.frame(sim_users[,6]),keep.rownames = TRUE)[])
names(x) = c('critic','similarity')
ratings_t = merge(x = ratings_t, y = x, by = "critic", all.x = TRUE)
#mutiply rating with similarity values
ratings_t$sim_rating = ratings_t$rating*ratings_t$similarity
#predicting the non rated titles
result = ratings_t %>% group_by(title) %>%
summarise(sum(sim_rating)/sum(similarity))
#function to make recommendations
generateRecommendations <- function(userId){
rating_critic =
setDT(movie_ratings[colnames(movie_ratings)[userId]],keep.rownames =
TRUE)[]
names(rating_critic) = c('title','rating')
titles_na_critic = rating_critic$title[is.na(rating_critic$rating)]
ratings_t =ratings[ratings$title %in% titles_na_critic,]
#add similarity values for each user as new variable
x = (setDT(data.frame(sim_users[,userId]),keep.rownames = TRUE)[])
names(x) = c('critic','similarity')
ratings_t = merge(x = ratings_t, y = x, by = "critic", all.x = TRUE)
#mutiply rating with similarity values
ratings_t$sim_rating = ratings_t$rating*ratings_t$similarity
#predicting the non rated titles
result = ratings_t %>% group_by(title) %>%
summarise(sum(sim_rating)/sum(similarity))
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return(result)
}

Summary
Congratulations! We have built a very basic recommendation engine using R. We have seen
the step-by-step approach of building a recommendation engine. In the following chapters,
we will learn about different types of recommendation engines and their implementations
in various technologies such, as Spark, Mahout, Neo4j, R, and Python. In the next chapter,
we will learn about the various types of recommendation engines in depth.



3
Recommendation Engines

Explained
In Chapter 2, Build Your First Recommendation Engine, we learned how to build a basic
recommender system using R. With introductions to various recommender systems in
Chapter 1, Introduction to Recommendation Engines, we have got a fair idea about what a
recommender system is and why a recommender system is important in the current age of
data explosion. In this chapter we will learn about various types of recommender systems
in detail. This chapter explains Neighborhood similarity-based recommendations,
personalized recommendation engines, model-based recommender systems, and hybrid
recommendation engines.

The following are the different subtypes of recommender system covered in this chapter:

Neighborhood-based recommendation engines:
User-based collaborative filtering
Item-based collaborative filtering

Personalized recommendation engines:
Content-based recommendation engines
Context-aware recommendation engines

Model-based recommendation engines:
ML-based recommendation engines
Classification – SVM/KNN
Matrix Factorization
Singular value decomposition
Alternating Least Squares
Hybrid recommendation engines
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Evolution of recommendation engines
Over the years, recommender systems have evolved, from basic nearest neighborhood
methods to personalized recommenders to context-aware recommendations, from batch-
mode recommendations to real-time recommendations, from basic heuristic approaches
such as similarity calculation to more accurate, complex machine-learning approaches.

In the early stages of these recommender systems, only user ratings on products were used
for generating recommendations. At this time, researchers used only the available ratings
information. They simply applied heuristic approaches such as similarity calculation using
Euclidean distances, the Pearson coefficient, cosine similarity, and so on. These approaches
were well received and surprisingly they perform quite well even today.

This first generation of recommendation engines is called collaborative filtering or
neighborhood method recommenders. Though they perform very well, these
recommenders come with their own set of limitations such as cold-start problems; that is to
say, they failed to recommend products to new users with no rating information and
recommend new products with no ratings to the users. Also these recommenders failed to
handle scenarios where the data is very sparse, so user ratings on products are much less.

In order to overcome these limitations, new approaches have been developed. For example,
in order to handle very large user-rating with high data sparsity, mathematical approaches
such as Matrix Factorization and singular value decomposition methods have been used.

To handle the cold-start problem, new approaches such as content-based recommendation
systems have been developed. These recommender systems opened the door to many more
opportunities such as personalized recommenders systems, which enabled them to
recommend products to each user on an individual level. In this approach, instead of rating
information, user personal preferences and product features are considered.
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In the beginning, similarity calculations were used in content-based recommenders, but
with advancements in technology and infrastructure more advanced methods such as
machine-learning models have replaced the heuristic methods. These new machine models
have improved the accuracy of the recommendations.

Though content-based recommenders have solved many of the shortcomings of
collaborative filtering, these have their own inherent shortcomings such as serendipity, that
is to say not being able to recommend new items outside the user's preference scope, which
collaborative filtering can do.

To solve this problem, researchers started combining different recommendation models to
come up with hybrid recommendation models, which are much more powerful than any of
the individual models.

With personal successful implementations of personalized recommendation engines, people
started extending the personalization to other dimensions called contexts, such as the
addition of location, time, group, and so on, and changed the set of recommendations with
each context.

With advancements in technology such as big data ecosystems, in-memory analytic tools
such as Apache Spark, and recommendations in real time, the capability of handling very
large databases has become possible.
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Currently we are moving into more personalization of aspects such as temporal dimension
and ubiquitous ways of recommendation.

In the technology aspect the recommendations are moving from machine-learning
approaches to more advanced neural network deep-learning approaches.

Nearest neighborhood-based
recommendation engines
As the name suggests, neighborhood-based recommender systems considers the
preferences or likes of the user community or users of the neighborhood of an active user
before making suggestions or recommendations to the active user. The idea for
neighborhood-based recommenders is very simple: given the ratings of a user, find all the
users similar to the active user who had similar preferences in the past and then make
predictions regarding all unknown products that the active user has not rated but are being
rated in their neighborhood:
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While considering the preferences or tastes of neighbors, we first calculate how similar the
other users are to the active user and then unrated items from the user community are
recommended to the user following predictions. Here the active user is the person to whom
the system is serving recommendations. Since similarity calculations are involved, these
recommender systems are also called similarity-based recommender systems. Also, since
preferences or tastes are considered collaboratively from a pool of users, these
recommender systems are also called collaborative filtering recommender systems. In these
types of systems, the main actors are the users, products, and user's preference information
such as rating/ranking/liking towards the products.

The following image is an example from Amazon showing a neighborhood case:

These heuristic-based methods are based on the following assumptions:

People with similar preferences in the past have similar preferences in the future
People's preferences will remain stable and consistent in the future

The collaborative filtering systems come in two flavors:

User-based collaborative filtering
Item-based collaborative filtering
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These neighborhood methods are employed when we have only the users' interaction data
of the products, such as ratings, like/unlike, view/not. Unlike content-based
recommendations, which will be explained in the next section, they do not consider any
features of the products or personal preferences of the user for the products:

User-based collaborative filtering
As previously mentioned, the basic intuition behind user-based collaborative filtering
systems is that people with similar tastes in the past will like similar items in future as well.
For example, if user A and user B have very similar purchase histories and if user A buys a
new book which user B has not yet seen then we can suggest this book to user B as they
have similar tastes.

 



Recommendation Engines Explained

[ 45 ]

Let us try to understand user-based collaborative filtering with an example:

Problem Statement: Imagine we have a dataset used in Chapter 2, Build Your First
Recommendation Engine containing the reviewers' ratings given to movies on a movie review
site. The task at hand is to recommend movies to the reviewers:

Before we learn the recommendation approach, the first step is to analyze the data at hand.
Let us analyze the data step-by-step as follows:

A collection of users who have interacted with the application
A movie catalog of all the available movies
We have individual users' ratings of movies

Note that each user has not rated all of the movies but only a few movies
from the entire catalog.

The first step is to find similar users for an active user and then suggest new movies that
this active user has not seen but similar users have seen.

This can be summarized in two steps:

Calculate the similarity between users using the rating information of the movies.1.
For each active user, consider the movies that are not rated by them but rated by2.
other users. Predict the unknown ratings for the non-rated movies for the active
user.
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In the preceding tabular data, let us recommend new movies to our active user, Jack
Mathews:

The first step is to look for similar users to Jack. We observe by looking at the1.
dataset that Gene Seymour and Mick Lasalle are very similar to Jack Mathews.
The similarity between users is calculated based on the ratings given by users.2.
The most common approaches for calculating the similarity are Euclidean
distance and the Pearson correlation coefficient.
For now we choose Euclidean distance to find the similarity calculation given by3.
the equation that follows:

The intuition behind using Euclidean distance is that we represent users, movies, and
ratings as points in a vector space with users on the x axis, movies on the y axis, and ratings
as points in vector space. Now that we have projected our data into vector space, similarity
or closeness between two points can be calculated using Euclidean distance, and the
Pearson correlation coefficient. The detailed explanation for the similarity measures will be
explained in Chapter 4, Data Mining Techniques Used in Recommendation Engines.

Using the previous equation we can calculate the similarity between all the reviewers as
shown in the table. We observe from the table that our active user, Toby, is most similar to
Lisa Rose.
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As a second step we predict the ratings for the unknown movie Just My Luck for Jack by
calculating the weighted average of the ratings given by other reviewers for Just My Luck
given in the following:

The rating for Jack for the Just my Luck movie is given by the following:

(3*0.9285+1.5*0.944+3*0.755+2*0.327)/(0.8934051+0.3812464+0.9912407+0.9244735)= 2.23

In the above equation, we have multiplied the similarity values of all reviewers with Jack by
the ratings given by them to the Just My Luck movie and then summed all the values. This
total sum is divided by the sum of similarity values to normalize the final rating. Similarly
we can predict unknown movie ratings for all the reviews and then recommendations can
be made.

Item-based collaborative filtering
In item-based collaborative filtering recommender systems, unlike user-based collaborative
filtering, we use similarity between items instead of similarity between users. The basic
intuition for item-based recommender systems is that if a user liked item A in the past they
might like item B, which is similar to item A:
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In user-based collaborative filtering, there are a few downs sides:

The system suffers with performance if the user ratings are very sparse, which is
very common in the real world where users will rate only a few items from a
large catalog
The computing cost for calculating the similarity values for all the users is very
high if the data is very large
If user profiles or user inputs change quickly then we have to re-compute the
similarity values that come with a high computational cost

Item-based recommendation engines handle these shortcomings by calculating similarity
between items or products instead of calculating similarity between users, thereby reducing
the computational cost. Since the item catalog doesn't change rapidly, we don't have to re-
compute calculations very often.

As with a user-based collaborative filtering approach there are two steps for an item-based
collaborative approach:

Calculating the similarity between items.1.
Predicting the ratings for the non-rated item for an active user by making use of2.
previous ratings given to other similar items.

The most common similarity measure used for this approach is cosine similarity. Cosine
similarity calculates the similarity between two n-dimensional vectors by the angle between
them in the vector space. Cosine similarity is given by the following equation:

When applying cosine similarity to recommender systems, we consider the item column as
the n-dimensional vector and the similarity between two items as the angle between them.
The smaller the angle, the more similar the items.
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For example, in the previous dataset, if we want to predict the rating for Toby for the movie
Lady in the Water, first we have to identify movies similar to Lady in the Water. Using the
previous cosine equation we can calculate the similarity for all the items. The following
table shows the similarity values for all the movies:

Item-based similarity is calculated only for co-rated items.

From the preceding table, we see that You, me and Dupree is the most similar to Lady in the
Water (0.8897565).

We now predict the rating for the Lady in the Water movie by calculating the weighted sum
of ratings assigned to movies similar to Lady in the Water by Toby. That is to say, we take the
similarity score of Lady in the Water for each movie rated by Toby, multiply it by the
corresponding rating, and sum up all the scores for all the rated movies. This final sum is
divided by the total sum of similarity scores of Lady in the Water given as follows:

Rating for Lady in the Water:

(0.795*4.5 + 0.814*4 + 0.889*1)/(0.795+0.814+0.889) = 3.09

Similarly we can calculate ratings for all other users for movies using the preceding
equation. In Chapter 4, Data Mining Techniques Used in Recommendation Engines, we deal
with other similarity metrics that can be used in item-based recommendations.

Advantages
Easy to implement
Neither the content information of the products nor the users' profile information
is required for building recommendations
New items are recommended to users giving a surprise factor to the users
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Disadvantages
This approach is computationally expensive as all the user, product, and rating
information is loaded into the memory for similarity calculations.
This approach fails for new users where we do not have any information about
the users. This problem is called the cold-start problem.
This approach performs very poorly if we have little data.
Since we do not have content information about users or products, we cannot
generate recommendations accurately based on rating information only.

Content-based recommender systems
In the previous section, we saw that the recommendations were generated by considering
only the rating or interaction information of the products by the users, that is to say that
suggesting new items for the active user is based on the ratings given to those new items by
similar users to the active user.

Let's take the case of a person who has given a 4-star rating to a movie. In a collaborative
filtering approach we only consider this rating information for generating
recommendations. In real life, a person rates a movie based on the features or content of the
movie such as its genre, actor, director, story, and screenplay. Also the person watches a
movie based on their personal choices. When we are building a recommendation engine to
target users at a personal level, the recommendations should not be based on the tastes of
other similar people but should be based on the individual users' tastes and the contents of
the products.

A recommendation that is targeted at a personalized level and that considers individual
preferences and contents of the products for generating recommendations is called a
content-based recommender system.

Another motivation for building content-based recommendation engines is that they solve
the cold-start problem that new users face in the collaborative filtering approach. When a
new user comes, based on the preferences of the person we can suggest new items that are
similar to their tastes.
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Building content-based recommender systems involves three main steps, as follows:

Generating content information for products.1.
Generating a user profile and preferences with respect to the features of the2.
products.
Generating recommendations and predicting a list of items that the user might3.
like:
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Item profile generation: In this step, we extract the features that represent the product.
Most commonly the content of the products is represented in the vector space model with
product names as rows and features as columns. Usually the content of the products will
either be structured data or unstructured data. Structured data will be obtained from the
databases; unstructured features would include the reviews, tags, or textual properties
associated in websites. In the item profile generation step, we have to extract relevant
features and their relative importance score associated with the product.

For generating the item profile we use the term frequency inverse document frequency (tf-
idf) for calculating the feature relative importance associated with the item. Since we
represent the item features in vector representation, we may use tf-idf, which will be
explained in detail in Chapter 4, Data Mining Techniques Used in Recommendation Engines.

Let us try to better understand with an example. As we've already mentioned, for content-
based recommendation engines, we require additional content information about Movies,
as follows:
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The first thing we have to do is to create an item profile using tf-idf, by means of the
following steps:

Create a term frequency matrix containing the frequency count of each term in each
document; that is to say, in our case, the presence of each genre in each movie. The number
1 represents the presence of the genre and 0 represents the absence of the genre:

The next step is to create inverse document frequency given by the following formula:

Idf = Log(total number of documents/document frequency)

Here, the total number of documents is the number of movies, and the document frequency
is the total number of times they have occurred in all the documents:

The final step is to create a tf-idf matrix given by the following formula:

tf*idf
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User profile generation
In this step, we build the user profile or preference matrix matching the product content. In
general we build the user profile or features that are in common with the product content as
it makes more sense to compare both user and item profiles and calculate the similarity
between them.

Let's consider the following dataset showing the viewed history of each user. If there is a
value of 1 in the matrix cell, it means that the user has seen the movie. This information
gives us their preference of movies:

From the preceding information, we will create a user profile that can be used to compare
with the item profile; that is to say, we now create a user profile that contains the user
preference of the item features, to genres, in our case. Dot product between the tf-idf and
user preference matrix will give the user affinity for each of the genres, as shown in the
following table:

dotProduct(Tf-idf, userPreference matrix)
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With user profiles and item profiles at hand, the next step would be to estimate the degree
to which the user will prefer each of the items. We can now use cosine similarity to compute
the user preference for each of the items. In our example, the cosine similarity between user
and item profiles gives the following results:

cosineSimilarity(userProfile,ItemProfile)

From the preceding table we can conclude that the greater the cosine angle the more likely
the user is to like a movie and hence it can be recommended to the user.

Now that we have made the recommendations, let us take a step back from gathering user
preference data. Usually there are two ways of capturing user data; these are as follows:

Explicitly ask the user for their preferences regarding the product's features, and
store them.
Implicitly capture the user interaction data on products such as browsing history,
rating history, and purchase history, and build the user preferences to the
product features. In Chapter 4, Data Mining Techniques Used in Recommendation
Engines, and Chapter 5, Building Collaborative Filtering Recommendation Engines,
we build recommendation engines using explicit and implicit user activity
examples.

The approach that we have followed until now for building a content-based
recommendation system is based on similarity calculation. We may also apply supervised
machine-learning approaches such as classification for predicting the most probable
products the user might like.
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Recommender systems using machine learning or any other mathematical, statistical
models to generate recommendations are called model-based systems. In classification-
based approaches which fall under model-based recommender systems, first we build a
machine-learning model by using a user profile and item profile to predict if a user
likes/dislikes an item. Supervised classification tasks such as logistic regression, KNN-
classification methods, probabilistic methods, and so on, can be used. Model-based
recommendation engines are discussed in the next section.

Advantages
Content-based recommender systems target at an individual level
Recommendations are generated using the user preferences alone rather than the
user community as with collaborative filtering
These approaches can be employed in real time as the recommendation model
doesn't need to load all the data for processing or generating recommendations
Accuracy is high compared to collaborative approaches as they deal with the
content of the products instead of rating information alone
The cold-start problem can be easily handled

Disadvantages
As the system is more personalized the generated recommendations will become
narrowed down to only user preferences when more user information comes into
the system
As a result, no new products that are not related to the user preferences will be
shown to the user
The user will not be able to look at what is happening around them or what's
trending

Context-aware recommender systems
Over the years there has been an evolution in recommender systems from neighborhood
approaches to personalized recommender systems that are targeted to individual users.
These personalized recommender systems have become a huge success as this is useful at
end user level, and for organizations these systems become catalysts to increase their
business.
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Though the personalized recommender systems were targeted at the individual user level
and provided recommendations based on the personal preferences of the users, there was
scope to refine the systems. For example, the same person in different places might have
different requirements. Likewise, the same person has different requirements at different
times:

Our intelligent recommender systems should be evolved enough to cater to the needs of the
users for different places, at different times. The recommender system should be robust
enough to suggest cotton shirts to a person during summer and leather jackets during
winter. Similarly, based on the time of day, suggesting good restaurants serving a person's
personal choice of breakfast or dinner would be very helpful. These kinds of recommender
systems that consider location, time, mood, and so on, that defines the context of the user
and suggests personalized recommendations, are called context aware recommender
systems:

The preceding image illustrates a recommendation engine suggesting coffee in cold
weather.
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Context definition
So what exactly is context? In general, context represents the present state of the user. The
context of a user can be anything such as place, time, day, season, mood, device, whether
the user is alone, at the office, on vacation, with family, with friends, life events, and so on.
Since people will have different needs in different contexts, the recommendation systems
can capture the context information of the user and refine their suggestions accordingly.

For example, a travel vacation system may consider season, place, and time as context for
refining the suggestions; an e-commerce website can consider the life event and user
purchases for context aware recommendations, and a food website may consider time of
day and place information while recommending restaurants.

How are context aware systems designed? Until now we have considered recommendations
as a two-dimensional problem, that is to say user preferences and item representations.
With the inclusion of context as a new dimension we can build context aware
recommendations as a three-dimensional problem:

Recommendations = User x Item x Context
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Let us revisit the same example as we did in the content-based recommendations, where we
considered the user profile and the item profile to generate the user ratings for each of the
items based on user preferences by computing the similarity between the user profile and
the item profile. Now, in context aware systems, we include context to generate the
rankings for items with respect to user preference and context.

For example, we can assume our recommendation has captured the movie watching
patterns of the user for a weekday, weekend, and holiday. From this context information,
we extract the affinity of each user for the movie contents. For example, consider the
following preferences for TOBY for each of the contexts for the movie contents:

Let us first create a user profile for TOBY for each of the contexts for all the movie content.
A dot product between the context matrix and user profile matrix gives us the user profile
for all the contexts:

Dotproduct(user profile, context matrix) for TOBY:

We have now calculated the preference of TOBY for each context for the movie context. The
next step would be to calculate the ranking of each movie for TOBY for all the contexts.
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Cosine similarity (contextual movie content preference matrix, item profile):

Now we have the context level ranking for movies for TOBY, we can suggest movies based
on the context.

From the preceding example, we understood that context-aware recommender systems are
content-based recommenders with the inclusion of a new dimension called context. In
context-aware systems, recommendations are generated in two steps, as follows:

Generate a list of recommendations of the products for each user based on the1.
user's preferences; that is, content-based recommendations.
Filter out the recommendations that are specific to a current context.2.

The most common approaches for building context-aware recommender systems are as
follows:

Post-filtering approaches
Pre-filtering approaches
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Pre-filtering approaches
In the pre-filtering approach, context information is applied to the user profile and product
content. This step will filter out all the non-relevant features, and final personalized
recommendations are generated on the remaining feature set. Since the filtering of features
is performed before generating personalized recommendations, these are called pre-
filtering approaches:
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Post-filtering approaches
In post-filtering approaches, firstly personalized recommendations are generated based on
the user profile and the product catalogue, then the context information is applied to filter
out the relevant products to the user for the current context:

Advantages
Context aware systems are much more advanced than the personalized content-
based recommenders as these systems will be constantly in sync with user
movements and generate recommendations as per the current context
These systems have more of a real-time nature
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Disadvantages
Serendipity or surprise factor, as with other personalized recommenders, will be
missing in these types of recommendation as well

Hybrid recommender systems
Collaborative filtering systems and content-based recommender systems are effective and
cater to a wide range of needs. They have quite successful implementations but each
independently has its own limitations. Research has started moving in the direction of
combining both collaborative filtering and content-based recommendations. This new type
of recommender system formed by combining collaborative filtering with content-based
methods is called a hybrid recommender system.

The choice of combining the different recommendation approaches is up to the researcher
or the person implementing the hybrid recommendation engine based on the problem
statement and business needs.

The most common approaches followed for building a hybrid system are as follows:

Weighted method
Mixed method
Switching method
Cascade method
Feature combination method
Feature augmentation
Meta-level

Weighted method
In this method the final recommendations would be the combination, mostly linear, of
recommendation results of all the available recommendation engines. At the beginning of
the deployment of this weighted hybrid recommendation engine, equal weights will be
given to each of the results from available recommendation engines, and gradually the
weights will be adjusted by evaluating the responses from the users to recommendations.



Recommendation Engines Explained

[ 64 ]

Mixed method
The mixed method is applicable in places where we can mix results from all the available
recommenders. These are mostly employed in places where it is not feasible to achieve a
score for a product by all the available recommender systems because of data sparsity.
Hence recommendations are generated independently and are mixed before being sent to
the user.

Cascade method
In this approach, recommendations are generated using collaborative filtering. The content-
based recommendation technique is applied and then final recommendations / a ranked list
will be given as the output.

Feature combination method
The feature combination method, in which we combine the features of different
recommender systems and final recommendation approach, is applied on the combined
feature sets. In this technique, we combine both User-Item preference features extracted
from content based recommender systems and, User-Item ratings information, and consider
a new strategy to build Hybrid recommender systems.



Recommendation Engines Explained

[ 65 ]

Advantages
Issues such as the cold-start problem and data sparsity can be handled
These systems are much more robust and scalable than any of the individual
models
A combination of methods leads to an improvement in accuracy

Model-based recommender systems
Till now we have been focusing on neighborhood approaches which involve similarity
calculations between users or products for collaborative filtering approaches or represent
the user and item contents in a vector space model, and find similarity measures to identify
items similar to the preferences of the users. The main objective of the similarity-based
approaches is to calculate the weights of the preferences of users for the products or
product content and then use these feature weights for recommending items.

These approaches have been very successful over the years and even today. But these
approaches have their own limitations. Since entire data has to be loaded into the
environment for similarity calculations, these approaches were also known as memory-
based models. These memory-based models are very slow to respond in real-time scenarios
when the amount of data is very large as all the data has to be loaded. Another limitation is
that the weights calculated are not learned automatically as with machine-learning
applications. The cold-start problem is another common limitation that memory-based or
neighborhood-based methods suffer from.

In order to address these limitations, researchers started to apply more advanced methods
to improve the performance of the recommendation engines such as probabilistic models,
machine-learning models such as supervised and unsupervised models, and matrix
approaches such as Matrix Factorization and single value decomposition. In the model-
based approaches, using available historical data, a model is built with weights learned
automatically. New predictions regarding the products will be made using the learned
weights and then the final results ranked in a specific order before making
recommendations.
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Probabilistic approaches
In a probabilistic approach, we build a probability model using the prior probabilities from
the available data, and a ranked list of recommendations is generated by calculating the
probability of liking/disliking of a product for each user. Most commonly the Naïve Bayes
method is used in probabilistic approaches, which is a simple but powerful technique.

Machine learning approaches
As explained in content-based recommender systems, we can consider a recommendation
problem as a machine-learning problem. Using historical user and product data, we can
extract features and output classes and then build a machine learning model. A final ranked
list of product recommendations is generated using the generated model. Many machine-
learning approaches such as logistic regression, KNN classification, decision trees, SVM,
clustering, and so on, can be used. These machine-learning approaches are applied for
collaborative, content based, context aware, and hybrid recommender systems. In Chapter
4, Data Mining Techniques Used in Recommendation Engines, we learn in detail about each of
the machine-learning approaches.

Mathematical approaches
In these approaches, we assume that the ratings or interaction information of users on
products are simple matrices. On these matrices we apply mathematical approaches to
predict the missing ratings for the users. The most commonly used approaches are the
Matrix Factorization model and single valued decomposition models:
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By applying matrix decomposition approaches we assume that we decompose the original
rating matrix (R) into two new matrices (U, V) that represent the latent features of the users
and movies.

In mathematical terms, we can decompose a matrix into two low rank matrices. In the
preceding example, matrix R is decomposed into matrices U and V. Now when we multiply
back U and V we get the original matrix R approximately. This concept is used in
recommendation engines for filling up the unknown ratings in the original rating matrix,
and recommendations are then ranked and suggested to the users.

In Chapter 4, Data Mining Techniques Used in Recommendation Engines we discuss these two
approaches in more detail.

Advantages
Model-based recommendations are much more accurate than the heuristic-based
approaches such as neighborhood methods
In heuristic methods the weights of products / product content is more static,
whereas in model-based recommendations, the weights are established through
auto-learning
The model-based approach extracts many unseen patterns using data-driven
approaches

Summary
In this chapter, we have learned about popular recommendation engine techniques such as
collaborative filtering, content-based recommendations, context aware systems, hybrid
recommendations, and model-based recommendation systems, with their advantages and
disadvantages. There are different similarity methods such as cosine similarity, Euclidean
distance, and the Pearson coefficient. Subcategories within each of the recommendations are
also explained.

In the next chapter, we learn about different data-mining techniques such as Neighborhood
methods, machine learning methods used in recommendation engines, and their evaluation
techniques such as RMSE and, Precision-Recall.



4
Data Mining Techniques Used

in Recommendation Engines
Data mining techniques lie at the heart of recommendation engines. These data mining
techniques help us extract patterns, group users, calculate similarities, predict preferences,
handle sparse input data, evaluate recommendation models, and so on. In the previous
chapter, we have learned about recommendation engines in detail. Though we did not get
into the implementation of recommendation engines, we learned the theory behind the
different types of recommendations engines, such as neighborhood-based, personalized,
contextual recommenders, hybrids, and so on. In this chapter, we shall look into the
popular data mining techniques currently used in building recommendation engines. The
reason for dedicating a separate chapter to this is that we will come across many techniques
while implementing recommendation engines in the subsequent chapters.

This chapter is broadly divided into the following sections:

Neighbourhood-based techniques
Euclidean distance
Cosine similarity
Jaccard similarity
Pearson correlation coefficient

Mathematical modelling techniques
Matrix factorization
Alternating Least Squares
Singular value decomposition
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Machine learning techniques 
Linear regression
Classification models

Clustering techniques
K-means clustering

Dimensionality reduction
Principal component analysis

Vector space models
Term frequency
Term frequency-inverse document frequency

Evaluation techniques
Root-mean-square error
Mean absolute error
Precision and recall

Each section is explained with the basic technique and its implementation in R.

Let's start refreshing the basics that are mostly commonly used in recommendation engines.

Neighbourhood-based techniques
As introduced in the previous chapters, the neighbourhood methods are very simple
techniques, which are used right from the beginning of building recommendation engines.
These are the oldest yet most widely used approaches, even today. The popularity of these
widely used approaches is because of their accuracy in generating recommendations. We
know that almost every recommender system works on the concept of similarity between
items or users. These neighbourhood methods consider the available information between
two users or items as two vectors, and simple mathematic calculation is applied between
these two vectors to see how close they are. In this section, we will discuss the following
neighbourhood techniques:

Euclidean distance
Cosine similarity
Jaccard Similarity
Pearson correlation coefficient
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Euclidean distance
Euclidean distance similarity is one of the most common similarity measures used to
calculate the distance between two points or two vectors. It is the path distance between
two points or vectors in vector space.

In the following diagram, we see the path distance between the two vectors, a and b, as
Euclidean distance:

Euclidean distance is based on the Pythagoras's theorem to calculate the distance between
two points.

The Euclidean distance between two points or objects (point x and point y) in a dataset is
defined by the following equation:

Here, x and y are two consecutive data points, and n is the number of attributes for the
dataset.

How is Euclidean distance applied in recommendation engines?



Data Mining Techniques Used in Recommendation Engines

[ 71 ]

Consider a rating matrix containing user IDs as rows, item IDs as columns, and the
preference values as cell values. The Euclidean distance between two rows gives us the user
similarity, and the Euclidean distance between two columns gives us the item similarity.
This measure is used when the data is comprised of continuous values.

The R script for calculating the Euclidean distance is as follows:

x1 <- rnorm(30)
x2 <- rnorm(30)
Euc_dist = dist(rbind(x1,x2) ,method="euclidean")

Cosine similarity
Cosine similarity is a measure of similarity between two vectors of an inner product space
that measures the cosine of the angle between them; it's given by the following equation:

Let a be a vector (a1, a2, a3, a4) and b be another vector (b1, b2, b3, b4). The dot product
between these vectors a and b is as follows:

a.b = a1b1 + a2b2 + a3b3 + a4b4
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The resultant will be a single value, a scalar constant. What does it mean to take the dot
product between two vectors? To answer this question, let's define the geometric definition
of dot product between two vectors:

On rearranging the preceding equation, we get the following:

In the earlier equation, cosθ is the angle between two vectors, and acosθ is the projection of
vector A onto vector B.

The visual vector space representation of the dot product between two vectors can be
shown as follows:
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When cos angle between the two vectors is 90 degrees, the cos 90 will become zero, and the
whole dot product will be zero, that is, they will be orthogonal to each other. The logical
conclusion we can infer is that they are very far from each other:

When we reduce the cosine angle between the two vectors, their orientation will look very
similar to each other's.

When the angle between the two vectors is zero, cos 0 will be 1, and both the vectors will lie
on each other, as shown in the following image. Thus, we can say that the two vectors are
similar to each other in terms of their orientation:
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So on summarizing, we can conclude that when we compute the cosine angle between two
vectors, the resultant scalar value will indicate how close the two vectors are with each
other in terms of orientation:

Now let's revisit our original question: what does the dot product mean? When we take the
dot product between two vectors, the resultant scalar value represents the cosine angle
between them. If the scalar is zero, the two vectors are orthogonal and unrelated. If the
scalar is 1, the two vectors are similar.

Now, how is this applied in recommendation engines?

As mentioned earlier, consider a rating matrix containing user IDs as rows and item IDs as
columns. We can assume each row as user vectors and each column as item vectors.

The cosine angle between row vectors will give the user similarity, and cosine angle
between column vectors give the item similarity.

The R script for calculating the cosine distance is as follows:

vec1 = c( 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
vec2 = c( 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0 )
library(lsa)
cosine(vec1,vec2)

Here, x is matrix containing all the variables in a dataset; the cosine function is available in
the lsa package. The lsa is a text mining package available in r used for discovering latent
features or topics within the text. This package provides cosine() method to calculate
cosine angle between two vectors.

Jaccard similarity
Jaccard simlarity is another type of similarity measure used in recommendation engines.
The Jaccard similarity coefficient is calculated as the ratio of the intersection of features to
the union of features between two users or items.

http://inside-r.org/r-doc/base/c
http://inside-r.org/r-doc/base/c
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Mathematically speaking, if A and B are two vectors, the Jaccard similarity is given by the
following equation:

The Jaccard similarity coefficient metric is a statistic used to find the similarity and diversity
in sample sets. Since users and items can be represented as vectors or sets, we can easily
apply the Jaccard coefficient to recommender systems in order to find similarity between
users or items.

The R script for calculating the Jaccard similarity is as follows:

vec1 = c( 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
vec2 = c( 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0 )
library('clusteval')
cluster_similarity(vec1, vec2, similarity = "jaccard")

The clusteval package in r is a popular package for evaluating clustering techniques.
Cluster_similarity() method provides a very good implementation for calculating
Jaccard similarity.

Pearson correlation coefficient
Another way of finding the aforementioned similarity is to find the correlation between two
vectors. Instead of using the distance measures as a way of finding similarity among
vectors, we use the correlation between vectors in this approach.

The Pearson correlation coefficient can be computed as follows:

Here, r is the correlation coefficient, n is the total number of data points, xi is the ith vector
point of the x vector, yi is the ith vector point of the y vector, x-bar is the mean of vector x, y-
bar is the mean of vector y, sx is the standard deviation of vector x, and sy is the standard
deviation of vector y.
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Another way of computing the correlation coefficient between two variables is by dividing
the covariance of the two variables by the product of their standard deviations,

given by (rho):

Let's understand this with an example, as shown in the following image. We plot the values
of two vectors a, b; it is natural to assume that if all the points of the vectors vary together,
there exists a positive relation among them. This tendency to vary together, or covariance,
in simple terms, can be called correlation. Take a look at the following diagram:
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Let's now examine the following image. We can observe that the vectors are not varying
together, and the corresponding points are scattered randomly. So the tendency to vary
together, or covariance, is less or in other less correlation:

From the similarity calculation aspect, we can conclude that the more the correlation
between two vectors, the more similar they are.

Now, how is the Pearson correlation coefficient applied in recommendation engines?

As mentioned earlier, consider a rating matrix containing user IDs as rows and item IDs as
columns. We can assume each row as user vectors and each column as item vectors.

The correlation coefficient between the row vectors will give the user similarity, and the
correlation coefficient between the column vectors will give the item similarity using the
following equation.

The R script is given by the following equation:

Coef = cor(mtcars, method="pearson")

Here, mtcars is the dataset.
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Mathematic model techniques
Mathematical models such as matrix factorization and SVD have proved to be very accurate
when it comes to building recommendation engines over the similarity calculation
measures. Another advantage is their ability to scale down easily also allowed to design the
systems easily. In this chapter, we will learn about the mathematical models as explained
next.

Matrix factorization
A matrix can be decomposed into two low rank matrices, which when multiplied back will
result in a single matrix approximately equal to the original matrix.

Let's say that R, a rating matrix of size U X M can be decomposed into two low rank
matrices, P and Q, of size U X K and M X K respectively, where K is called the rank of the
matrix.

In the following example, the original matrix of size 4 X 4 is decomposed into two matrices,
P (4 X 2) and Q (4 X 2); multiplying back P and Q will bring me the original matrix of size 4
X 4 and values approximately equal to those of the original matrix:

One of the major advantages of the matrix factorization method is that we can compute the
empty cells in the original matrix, R, using the dot product between the low-rank matrices
P, Q. This is given by the following equation:
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When we apply the previous equation, we can reproduce the original matrix, R, with all the
empty cells filled.

In order to make the predicted values as close as to the original matrix as possible, we have
to minimize the difference between the original values and the predicted values, which is
also also known as error. The error between the original value and predicted value can be
given by the following equation:

In order to minimize the aforementioned error term and reproduce the original matrix as
closely as possible, we have to use gradient descend technique-an algorithm to find out
optimal parameters of an objective function and minimize the function in an iterative
manner, introduce Regularization term to the equation.

How is matrix factorization applied to recommendation engines?

This is core question, which we are more interested in rather than the mathematics involved
in matrix factorization. We will see how we can apply matrix factorization techniques in
building recommendation engines.

Recall the core tasks in building recommendation engines: finding similar users or items,
then predicting the non-rated preferences, and finally recommending new items to active
users. In short, we are predicting the non-rated item preferences. Recall this is what matrix
factorization does: predicting the empty cells in the original rating matrix.

Now, how do we justify our approach of applying matrix decomposition to low-rank
matrices to recommendation engines? To answer this question, we will discuss how users
rate movies. People rate movies because of the story or actors or the genre of the movie, that
is, users rate items because of the features of the items. When given a rating matrix
containing user IDs, item IDs, and rating values, we can make an assumption that users will
have some inherent preferences toward rating items, and the items will also have inherent
features that help users rate them. These features of users and items are called latent
features.

Considering the earlier assumption, we apply the matrix factorization technique to the
rating matrix the two low-rank matrices, which are assumed to be the user latent feature
matrix and item latent feature matrix:
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Considering these assumptions, researchers started applying matrix factorization
techniques in building recommender systems. The advantage of the matrix factorization
methods is that since it is a machine-learning model, the feature weightages are learned
overtime, improving the model accuracy:

The following code explains the implementation of Matrix Factorization using nmf package
in R:

#MF
library(recommenderlab)
data("MovieLense")
dim(MovieLense)

#applying MF using NMF
mat  = as(MovieLense,"matrix")
mat[is.na(mat)] = 0
res = nmf(mat,10)
res

#fitted values
r.hat <- fitted(res)
dim(r.hat)

p <- basis(res)
dim(p)
q <- coef(res)
dim(q)
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Alternating least squares
Recall the error minimization equation in the previous section. Upon introducing a
regularization term to avoid over fitting, the final error term would look like the following
equation:

In order to optimize the preceding equation, there are two popular techniques:

Stochastic gradient descent (SGD): A mini-batch optimizing technique, similar
to gradient descend, for finding optimal parameters in large-scale data or sparse
data.
Alternating least squares(ALS): The main advantage of ALS method over SGD is
that it can be easily parallelized on distributed platforms.

In this section, we will look into the ALS method.

The preceding equation involves two unknowns, which we need to solve. Since two
unknowns are involved, the aforementioned equation is a non-convex problem. If we fix
one of the unknown term constants, this optimization problem will become quadratic and
can be solved optimally.

Alternating least squares is an iterative method, which involves computing one feature
vector term using the least squares function by fixing the other feature vector term constant
until we solve the preceding equation optimally.

In order to compute the user feature vector, we fix the item feature vector as a constant and
solve for least squares. Similarly, while computing the item feature vector, we fix the user
feature vector as a constant and solve for least squares.

Following this approach, we are able to convert a non-convex problem into a quadratic one,
which can be solved optimally.

Most of the open source distributed platforms such as Mahout and Spark use the ALS
method to implement scalable recommender systems for their ability to be parallelized.
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Singular value decomposition
Singular value decomposition (SVD) is another very popular matrix factorization method.
In simple terms, an SVD method decomposes a real matrix A of size m x n into three
matrices, U, ,V, which satisfy the following equation:

In the previous equation, r is called the rank of the matrix, A. U, V are orthogonal matrices,
and  is a diagonal matrix having all singular values of the matrix A. The values of the U
and V are real if A is a real matrix. The values of matrix  are positive and real and are
available in a decreasing order.

SVD can also be used as a dimensionality reduction technique, following two steps:

Choose a rank k that is less than r.

Recompute or subsize the U,  ,V matrices to (m x k), (k x k), (k x n).

The matrices obtained by applying SVD are very much applicable to recommender systems
as they provide the best low-rank approximations of the original matrix. How do we apply
the SVD approach to recommendation? Let's take a rating matrix R of size m x n containing
many empty cells. Similar to matrix factorization, our objective is to compute an
approximate rating matrix as close as possible o the original matrix with the missing values
being predicted.
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Applying SVD on R will produce three matrices, U, , V, of sizes, let's say, m x r, r x r, r x n.
Here, U represents the user latent feature vector representations, V represents the item
latent feature vector representations, and  represents the independent feature
representation, r, of user and items. By setting the value of the independent feature
representation to a value k less than r, we are choosing the k optimal latent features, thereby
reducing the size of the matrix. The k-value can be chosen using the cross-validation
approach as the value of k defines the performance of the model.

A simpler method for choosing the value k as  is to take a diagonal
matrix that contains singular values in a descending order, choose the
values in the diagonal that have higher values, and eliminate very less
diagonal values.

After choosing the k-value, we now resize or choose the first k-column in each of the
matrices U, ,V. This step will render matrices U, ,V of size m x k, k x k, and k x n
respectively, please refer to the below image. After we resize the matrices, we move ahead
to the final step.

In the final step, we will compute the dot products of the following series of matrices in
order to calculate the approximate rating matrix 

Below code snippet shows SVD implementations in R, the following code creates a sample
matrix and then SVD is applied, using svd() available in base package in r, on the sample
data to create 3 matrices, dot product between three matrices will get back our approximate
original matrix.

sampleMat <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
original.mat <- sampleMat(9)[, 1:6]
(s <- svd(original.mat))
D <- diag(s$d)
#  X = U D V'
s$u %*% D %*% t(s$v)
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Please refer to Chapter 7, Building Real-Time Recommendation Engines with
Spark for ALS implementation in Spark-python.

Machine learning techniques
In this section, we will learn about the most important or the most frequently used machine 
learning techniques, which are widely used in building recommendation engines.

Linear regression
Linear regression may be treated as a simple, popular, and the foremost approach for
solving prediction problems. We employ linear regression where our objective is to predict
the future outcomes, given input features and the output label is a continuous variable.

In linear regression, given historical input and output data, the model will try to find out
the relation between independent feature variables and the dependent output variable
given by the following equation and diagram:

Here, y represents the output continuous dependent variable, x represents independent
feature variables, β0 and β1 are the unknowns or feature weights, e represents the error.
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Using the ordinary least squares (OLS) approach, we will estimate the unknowns in the
preceding equation. We shall not go deep into the linear regression approach, but here we
will discuss how we can use linear regression in recommendation engines.

One of the core tasks in recommendation engines is to make predictions for non-rated items
for users. For example, in case of item-based recommendation engines, the prediction for
item i by user u is done by computing the sum of ratings given by user u to items similar to
item i. Then each rating is weighted by its similarity value:

Instead of using this weighted average approach to make the predictions, we can use the
linear regression approach to calculate the preference values for user u for item i. While
using regression approach, instead of using the original rating values of similar items, we
use their approximate rating values based on the linear regression model. For example, to
predict the rating for item i by user u, we can use the following equation:

Linear regression using R is given by the following code:

library(MASS)
data("Boston")
set.seed(0)
which_train <- sample(x = c(TRUE, FALSE), size = nrow(Boston),
                      replace = TRUE, prob = c(0.8, 0.2))
train <- Boston[which_train, ]
test <- Boston[!which_train, ]
lm.fit =lm(medv~. ,data=train )
summary(lm.fit)

Call:
lm(formula = medv ~ ., data = train)

Residuals:
     Min       1Q   Median       3Q      Max
-15.2631  -2.7614  -0.5243   1.7867  24.6306
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Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)  39.549376   5.814446   6.802 3.82e-11 ***
crim         -0.090720   0.040872  -2.220  0.02701 *
zn            0.050080   0.015307   3.272  0.00116 **
indus         0.032339   0.070343   0.460  0.64596
chas          2.451235   0.992848   2.469  0.01397 *
nox         -18.517205   4.407645  -4.201 3.28e-05 ***
rm            3.480574   0.469970   7.406 7.91e-13 ***
age           0.012625   0.015786   0.800  0.42434
dis          -1.470081   0.223349  -6.582 1.48e-10 ***
rad           0.322494   0.077050   4.186 3.51e-05 ***
tax          -0.012839   0.004339  -2.959  0.00327 **
ptratio      -0.972700   0.148454  -6.552 1.77e-10 ***
black         0.008399   0.003153   2.663  0.00805 **
lstat        -0.592906   0.058214 -10.185  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.92 on 396 degrees of freedom
Multiple R-squared:  0.7321,     Adjusted R-squared:  0.7233
F-statistic: 83.26 on 13 and 396 DF,  p-value: < 2.2e-16

#predict new values
pred = predict(lm.fit,test[,-14])

The lm() function, available in stats package I R, usually used to fit linear regression
models.

Classification models
Classification models fall into the category of the supervised form of machine learning.
These models are usually employed in prediction problems, where the response is binary or
multiclass labels. In this chapter, we will discuss many types of classification models, such
as logistic regression, KNN classification, SVM, decision trees, random forests, bagging, and
boosting. Classification models play a very crucial role in recommender systems. Though
classification models don't play a great role in neighbourhood methods, they play a very
important role in building personalized recommendations, contextual aware systems, and
hybrid recommenders. Also, we can apply classification models to the feedback information
about the recommendations, which can further be used for calculating the weightages for
user features.
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Linear classification
Logistic regression is the most common among classification models. Logistic regression is
also known as linear classification as it is very similar to linear regression, except that in
regression, the output label is continuous, whereas in linear classification, the output label is
class variable. In regression, the model is a least squares function, whereas in logistic
regression, the prediction model is a logit function given by the following equation:

In the preceding equation, e is the natural logarithm, x is the input variable, β0 is the
intercept, and β1 is the weight of variable x.

We may interpret the preceding equation as the conditional probability of response variable
against the linear combination of input variables. The logit function allows to take any
continuous variable and gives response in the range of (0,1), as illustrated in the following
diagram:
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The logistic regression using R is given as follows:

set.seed(1)
x1 = rnorm(1000)           # sample continuous variables
x2 = rnorm(1000)
z = 1 + 4*x1 + 3*x2        # data creation
pr = 1/(1+exp(-z))         # applying logit function
y = rbinom(1000,1,pr)      # bernoulli response variable

  #now feed it to glm:
df = data.frame(y=y,x1=x1,x2=x2)
glm( y~x1+x2,data=df,family="binomial")

The glm() function in R is used to fit generalized linear models, popularly employed for
classification problems.

KNN classification
The k nearest neighbors classification is popularly known as the KNN classification. This is
one of the most popular classification techniques. The basic concept in KNN classification is
that the algorithm considers k nearest items surrounding a particular data point and tries to
classify this data point into one of the output labels based on its k-nearest data points.
Unlike other classification techniques such as logistic regression, SVM, or any other
classification algorithms, KNN classification is a non-parametric model, which doesn't
involves any parameter estimation. The k in KNN is the number of nearest neighbors to be
considered:
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Consider 10 data points. We need to classify a test data point, highlighted in the preceding
diagram, into one of two classes, blue or orange. In this example, we classify the test data
point using the KNN classification. Let's say k is 4; it means that by considering four data
points surrounding the active data point, we need to classify it by performing the following
steps:

As a first step, we need to calculate the distance of each point from the test data
point.
Identify the top four closest data points to the test data point.
Using the voting mechanism, assign the majority class label count to the test data
point.

The KNN classification works well in case of highly non-linear problems. Though this
method works well in most cases, this method being a non-parametric approach cannot find
the feature importance or weightages.

Similar to the KNN classification, there is a regression version of KNN, which can be used
to predict the continuous output labels.

Both the KNN classification and egression methods find their wide applicability in
collaborative filtering recommender systems.

The following code snippet shows KNN classification using R, in the below code snippet we
are using knn3() available in caret package for fitting KNN classification and
sample_n() available in dplyr package to select random rows from a dataframe.

data("iris")
library(dplyr)
iris2 = sample_n(iris, 150)
train = iris2[1:120,]
test = iris2[121:150,]
cl = train$Species
library(caret)
fit <- knn3(Species~., data=train, k=3)
predictions <- predict(fit, test[,-5], type="class")
table(predictions, test$Species)
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Support vector machines
Support vector machines algorithms are a form of supervised learning algorithms
employed for solving classification problems. SVM is generally treated as one of the best
algorithms for dealing with classification problems. Given a set of training examples, where
each of the data points falls into one of two categories, an SVM training algorithm builds a
model that assigns new data points into one category or the other. This model is a
representation of the examples as points in space, mapped so that the examples of the
separate categories are divided by a margin that is as wide as possible, as shown in the
following figure. New examples are then mapped into that same space and predicted to
belong to a category based on which side of the gap they fall on. In this section, we will go
through an overview and implementation of SVMs without going into mathematical
details.

When SVM is applied to a p-dimensional dataset, the data is mapped to a p-1 dimensional
hyper plane, and the algorithm finds a clear boundary with sufficient margin between
classes. Unlike other classification algorithms that also create a separating boundary for
classifying data points, SVM tries to choose a boundary that has maximum margin for
separating the classes, as shown in the following figure:
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Consider a two-dimensional dataset having two classes, as shown in the previous figure.
Now, when the SVM algorithm is applied, firstly it checks whether a one-dimensional
hyper plane exists to map all the data points. If the hyper plane exists, the linear classifier
creates a decision boundary with a margin to separate the classes. In the preceding figure,
the thick redline is the decision boundary, and the thinner blue and red lines are the
margins of each class from the boundary. When new test data is used to predict the class,
the new data falls into one of the two classes.

The following are a few key points to be noted:

Though an infinite number of hyper planes can be created, SVM chooses only one
hyper plane that has maximum margin, that is, the separating hyper plane that is
farthest from the training observations.
This classifier is only dependent on the data points that lie on the margins of the
hyper plane, that is, on thin margins in the figure but not on other observations in
the dataset. These points are called support vectors.
The decision boundary is affected only by the support vectors but not by other
observations located away from the boundaries, that is, if we change the data
points other than the support vectors, there will not be any effect on the decision
boundary, but if the support vectors are changed, the decision boundary changes.
A large margin on the training data will also have a large margin on the test data
so as to classify the test data correctly.
Support vector machines also perform well with non-linear datasets. In this case,
we use radial kernel functions.

See below for R implementation of SVM on the iris dataset. We use the e1071 package to
run SVM. In R, the SVM() function contains the implementation of Support Vector
Machines present in the e1071 package.

The cross-validation method is used to evaluate the accuracy of predictive
models before testing future unseen data.
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We can see that the SVM method is called with the tune() method, which performs cross
validation and runs the model on different values of the cost parameters:

library(e1071)
data(iris)
sample = iris[sample(nrow(iris)),]
train = sample[1:105,]
test = sample[106:150,]
tune =tune(svm,Species~.,data=train,kernel ="radial",scale=FALSE,ranges
=list(cost=c(0.001,0.01,0.1,1,5,10,100)))
tune$best.model

Call:
best.tune(method = svm, train.x = Species ~ ., data = train, ranges =
list(cost = c(0.001,
    0.01, 0.1, 1, 5, 10, 100)), kernel = "radial", scale = FALSE)

Parameters:
   SVM-Type:  C-classification
 SVM-Kernel:  radial
       cost:  10
      gamma:  0.25

Number of Support Vectors:  25

summary(tune)

Parameter tuning of 'svm':
- sampling method: 10-fold cross validation
- best parameters:
 cost
   10
- best performance: 0.02909091
- Detailed performance results:
   cost      error dispersion
1 1e-03 0.72909091 0.20358585
2 1e-02 0.72909091 0.20358585
3 1e-01 0.04636364 0.08891242
4 1e+00 0.04818182 0.06653568
5 5e+00 0.03818182 0.06538717
6 1e+01 0.02909091 0.04690612
7 1e+02 0.07636364 0.08679584

cost =10 is chosen from summary result of tune variable
model =svm(Species~.,data=train,kernel ="radial",cost=10,scale=FALSE)
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The tune$best.modeltells us that the model works best with cost parameter as 10 and the
total number of support vectors as 25:

pred = predict(model,test)

Decision trees
Decision trees is a simple, fast, and tree-based supervised learning algorithm for solving
classification problems. Though not very accurate when compared to other logistic
regression methods, this algorithm comes in handy while dealing with recommender
systems.

Let's define the decision trees with an example. Imagine a situation where you have to
predict the class of flower based on its features such as petal length, petal width, sepal
length and sepal width. We apply the decision trees methodology to solve this problem:

We consider the entire data at the start of the algorithm.1.
Now we choose a proper question/variable to divide the data into two parts. In2.
our case, we choose to divide the data based on petal length > 2.45 and <= 2.45.
This separates flower class setosa from the rest of the classes.
We further divide the data having petal length > 2.45, based on same variable3.
with petal length < 4.5 and >= 4.5 as shown in the following diagram.
This splitting of the data will be further divided by narrowing down the data4.
space until we reach a point where all the bottom points represent the response
variables or where further logical split cannot be done on the data.

In the following decision tree diagram, we have one root node, four internal nodes where
data split occurred, five terminal nodes where data split cannot be done further, and they
are defined as follows:

Petal Length < 2.5 as root node
Petal length < 2.5, petal length < 4.85, sepal length < 5.15, and petal width < 1.75
are called internal nodes
Final nodes having the class of the flowers are called terminal nodes
The lines connecting the nodes are called the branches of the tree
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While predicting responses on new data using the aforementioned built model, each of the
new data points is taken through each of the nodes, a question is asked, and a logical path is
taken to reach its logical class:

Take a look at the decision tree implementation in R on the iris dataset using tree package
available from CRAN.

The summary of the mode given next tells us that the misclassification rate is 0.0381,
indicating that the model is very accurate:

library(tree)
data(iris)
sample = iris[sample(nrow(iris)),]
train = sample[1:105,]
test = sample[106:150,]
model = tree(Species~.,train)
summary(model)
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Below code shows plotting the decision tree:

plot(model) #plot trees
text(model) #apply text

The following code displays the decision tree model:

pred = predict(model,test[,-5],type="class")

The following image displays the prediction values made using pred() method:
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Ensemble methods
In data mining, we use ensemble methods, which refer to using multiple learning
algorithms to obtain better predictive results than applying any single learning algorithm
on any statistical problem. This section deals with an overview of popular ensemble
methods such as bagging, boosting, and random forests.

Random forests
Random forests refer to improvised supervised algorithm than bootstrap aggregation or
bagging method though built on a similar approach. Unlike selecting all the variables in all
the B samples generated using the bootstrap technique in bagging, we select only a few
predictor variables randomly from total variables for each of the B samples, and then these
samples are trained with the models. Predictions are made by averaging the result of each
model. The number of predictors in each sample is decided using the formula

, where p is the total variable count in the original dataset.

This approach removes the condition of dependency of strong predictor in
the dataset as we intentionally select fewer variables than all the variables
for every iteration.

This approach also decorrelates variables resulting in less variability in the
model, hence more reliability.

Take a look at the following R implementation of random forests on the iris dataset using
the randomForest package available from CRAN:

library(randomForest)
data(iris)
sample = iris[sample(nrow(iris)),]
train = sample[1:105,]
test = sample[106:150,]
model =randomForest(Species~.,data=train,mtry=2,importance
=TRUE,proximity=TRUE)
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The following image will display the model details for random forest built above:

pred = predict(model,newdata=test[,-5])

Bagging
Bagging is also known as bootstrap aggregating. It is designed to improve the stability and
accuracy of machine learning algorithms. It helps in avoiding overfitting and reduces
variance. This is mostly used with decision trees.

Bagging involves randomly generating bootstrap samples, random sample with
replacement, from the dataset and training the models individually. Predictions are then
made by aggregating or averaging all the response variables.

For example, consider a dataset (Xi, Yi) where i=1 …n, contains n data points. The following
are the steps to perform bagging on this dataset:

Now randomly select B samples with replacement from the original dataset using
the bootstrap technique.
Next, train the B samples with regression/classification models independently,
and then predictions are made on the test set by averaging the responses from all
the B models generated in case of regression or selecting the most-occurring class
among B samples in case of classification.
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Boosting
Unlike in bagging where multiple copies of bootstrap samples are created and a new model
is fitted for each copy of dataset and all the individual models are combined to create a
single predictive model, in boosting, each new model is built using information from
previously built models. Boosting can be understood as an iterative method involving two
steps:

A new model is built on the residuals of the previous models instead of response1.
variable.
Now the residuals are calculated from this model and updated to the residuals2.
used in previous step.

The preceding two steps are repeated multiple iterations allowing each new model to learn
from its previous mistakes, thereby improving the model accuracy.

The following code snippet shows us gradient boosting using R, gbm() package in r
generally used to perform various regression tasks:

library(gbm)
data(iris)
sample = iris[sample(nrow(iris)),]
train = sample[1:105,]
test = sample[106:150,]
model =
gbm(Species~.,data=train,distribution="multinomial",n.trees=5000,interactio
n.depth=4)
summary(model)
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The following image shows them model summary visually, showing the relative
importance of each feature:

The preceding summary states the relative importance of the variables of the model.

pred = predict(model,newdata=test[,-5],n.trees=5000)

Pick the response with the highest probability from the resulting pred matrix, by doing
apply(pred, 1, which.max) on the vector output from prediction.

p.pred <- apply(pred,1,which.max)
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In the preceding code snippet, the output value for the predict() function is used in the
apply() function to pick the response with highest probability among each row in the pred
matrix, and the resultant output from the apply() function is the prediction for the
response variable.

Clustering techniques
Cluster analysis is the process of grouping objects together in a way that objects in one
group are more similar than objects in other groups.

For example, identifying and grouping clients with similar booking activities on travel
portal, as shown in the following figure.

In the preceding example, each group is called a cluster, and each member (data point) of
the cluster behaves similar to its group members:

Cluster analysis is an unsupervised learning method. In supervised methods such as
regression analysis, we have input variables and response variables; we fit a statistical
model to the input variables to predict the response variable, whereas in unsupervised
learning methods, we do not have any response variable to predict; we only have input
variables. Instead of fitting a model to the input variables to predict the response variable,
we just try to find patterns within the dataset. There are three popular clustering
algorithms: hierarchical cluster analysis, k-means cluster analysis, and two-step cluster
analysis. In this section, we will learn about k-means clustering.
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K-means clustering
K-means is an unsupervised, iterative algorithm where k is the number of clusters to
formed from the data. Clustering is achieved in two steps, as follows:

The cluster assignment step: In this step, we randomly choose two cluster points
(red dot & green dot) and assign each data point to one of the two cluster points,
whichever is closer to it (Take a look at the top part of the following figure).
The move centroid step: In this step, we take the average of the points of all the
examples in each group and move the centroid to the new position, that is, the
mean position calculated (Take a look at the bottom part of the following image).

The preceding steps are repeated until all the data points are grouped into two groups and
the mean of the data points at the end of the move centroid step doesn't change:

The previous figure shows how a clustering algorithm works on data to form clusters. Take
a look at the following R implementation of k-means clustering on the iris dataset.

The k-means clustering using R is as follows:

library(cluster)
data(iris)
iris$Species = as.numeric(iris$Species)
kmeans<- kmeans(x=iris, centers=5)
clusplot(iris,kmeans$cluster, color=TRUE, shade=TRUE,labels=13, lines=0)
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The Clustplot() method available in cluster package is used to plot the clusters formed
for the IRIS dataset and is shown in the following image:

The previous figure shows the formation of clusters on the iris data, and the clusters
account for 95% of the data. In the previous example, the number of clusters k value is
selected using the elbow method.

The following code snippet explains implementation of k-means clustering, which is shown
in the next screenshot:

library(cluster)
library(ggplot2)
data(iris)
iris$Species = as.numeric(iris$Species)
cost_df <- data.frame()
for(i in 1:100){
kmeans<- kmeans(x=iris, centers=i, iter.max=50)
cost_df<- rbind(cost_df, cbind(i, kmeans$tot.withinss))
}
names(cost_df) <- c("cluster", "cost")
#Elbow method to identify the idle number of Cluster
#Cost plot
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ggplot(data=cost_df, aes(x=cluster, y=cost, group=1)) +
theme_bw(base_family="Garamond") +
geom_line(colour = "darkgreen") +
theme(text = element_text(size=20)) +
ggtitle("Reduction In Cost For Values of 'k'\n") +
xlab("\nClusters") + ylab("Within-Cluster Sum of Squares\n")

From the previous figure, we can observe that the direction of the cost function is changed
at cluster number 5, hence we choose 5 as our number of clusters k. Since the number of
optimal clusters is found at elbow of the graph, we call it the elbow method.

Dimensionality reduction
One of the most commonly faced problems while building recommender systems is high
dimensional and sparse data. Many times, we face a situation where we have a large set of
features and less number of data points. In such situations, when we fit a model to the
dataset, the predictive power of the model would be lower. This scenario is often termed as
the curse of dimensionality. In general, adding more data points or decreasing the feature
space, also known as dimensionality reduction, often reduces the effects of curse of
dimensionality. In this section, we will discuss principal component analysis, a popular
dimensionality reduction technique to reduce the effects of the curse of dimensionality.
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Principal component analysis
Principal component analysis (PCA) is a classical statistical technique for dimensionality
reduction. PCA algorithm transforms the data with high dimensional space to a space with
fewer dimensions. The algorithm linearly transforms m-dimensional input space to n-
dimensional (n<m) output space, with the objective of minimizing the amount of
information/variance lost by discarding (m-n) dimensions. PCA allows us to discard the
variables/features that have less variance.

Technically speaking, PCA uses orthogonal projection of highly correlated variables to a set
of values of linearly uncorrelated variables called principal components. The number of
principal components is less than or equal to the number of original variables. This linear
transformation is defined in such a way that the first principal component has the largest
possible variance, that is, it accounts for as much of the variability in the data as possible by
considering highly correlated features, and each succeeding component, in turn, has the
highest variance by using the features that are less correlated with the first principal
component, which is orthogonal to the preceding component.

Let's understand this in simple terms. Assume that we have a three-dimensional data space
with two features more correlated with each other than with the third. We now want to
reduce the data to a two-dimensional space using PCA.

The first principal component is created in such a way that it explains maximum variance
using the two correlated variables along the data. In the following figure, the first principal
component (the bigger line) is along the data explaining most variance. To choose the
second principal component, we need to choose another line that has the highest variance,
is uncorrelated, and is orthogonal to the first principal component, The implementation and
technical details of PCA is out of scope of this book, so we will discuss how it used in R.



Data Mining Techniques Used in Recommendation Engines

[ 105 ]

The following image explains the spatial representation of principal components:

We illustrate PCA using the USArrests dataset. The USArrests dataset contains crime
related statistics, such as Assault, Murder, Rape, UrbanPop per 100,000 residents in 50
states in the U.S..

PCA implementation in R is as follows:

data(USArrests)
head(states)
[1] "Alabama"    "Alaska"     "Arizona"    "Arkansas"   "California"
"Colorado"

names(USArrests)
[1] "Murder"   "Assault"  "UrbanPop" "Rape"

Let's use the apply() function to the USArrests dataset row-wise to calculate the variance
to see how each variable is varying:

apply(USArrests , 2, var)

Murder    Assault   UrbanPop       Rape
  18.97047 6945.16571  209.51878   87.72916
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We observe that Assault has the most variance. It is important to note at this point that
scaling the features is a very important step while applying PCA.

Apply PCA after scaling the feature, as follows:

pca =prcomp(USArrests , scale =TRUE)

pca
Standard deviations:
[1] 1.5748783 0.9948694 0.5971291 0.4164494

Rotation:
                PC1        PC2        PC3         PC4
Murder   -0.5358995  0.4181809 -0.3412327  0.64922780
Assault  -0.5831836  0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158  0.13387773
Rape     -0.5434321 -0.1673186  0.8177779  0.08902432

Now let's understand the components of PCA output:

names(pca)
[1] "sdev"     "rotation" "center"   "scale"    "x"

Pca$rotation contains the principal component loadings matrix, which explains the
proportion of each variable along each principal component.

Now let's learn how to interpret the results of PCA using a biplot graph. Biplot is used to
show the proportions of each variable along the two principal components.

The following code changes the directions of the biplot; if we don't include the following
two lines, the plot will be a mirror image of the following one:

pca$rotation=-pca$rotation
pca$x=-pca$x
biplot (pca , scale =0)
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The following image shows a plot showing principal components for the dataset:

In the previous figure, known as biplot, we can see the two principal components (PC1,
PC2) of the USArrests dataset. The red arrows represent the loading vectors, which shows
how the feature space varies along the principal component vectors.
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From the plot, we observe that the first principal component vector, PC1, more or less
places equal weight to three features: rape, assault, and murder. This means that these three
features are more correlated with each other than with the UrbanPop feature. The second 
principal component, PC2, places more weight on UrbanPop than and is less correlated
with the remaining three features.

Vector space models
Vector space models are algebraic models most commonly used in text analysis
applications for representing text documents using the words as vectors. This is widely
used in information retrieval applications. In text analysis, let's say we want to find the
similarity between two sentences. How do we go about this? We know that to compute
similarity measure metric, the data should be all numeric. When it comes to a sentence we
have words rather than numerals. Vectors space models allow us to represent the words
present in the sentences in numeric form so that we can apply any of the similarity
calculation metrics, such as cosine similarity.

This representation of sentences of words in numeric form can be done in two popular
ways:

Term frequency
Term frequency inverse document frequency

Let's understand the previously mentioned approaches with an example:

Sentence 1: THE CAT CHASES RAT.
Sentence 2: THE DOG CHASES CAT.
Sentence 3: THE MAN WALKS ON MAT.

Given three sentences, our objective is to find the similarity between the sentences. It is clear
that we cannot directly apply similarity metrics such as cosine directly. So now let's learn
how to represent them in numeric format.

As a general notation, each sentence in vector space model is known as a
document.



Data Mining Techniques Used in Recommendation Engines

[ 109 ]

Term frequency
Term frequency simply means the frequency of the word in a document. To find the
frequency, we need to perform the following steps:

The first step is to find all the unique keywords present in all the documents,1.
represented as V:

V = {THE, CAT, CHASES, RAT, DOG, MAN, WALKS, ON, MAT}

The next step is to create vectors of documents, shown as follows:2.

D1 = {THE, CAT, CHASES, RAT}

D2 = {THE, DOG, CHASES, CAT}

D3 = {THE, MAN, WALKS, ON, MAT}

In this step, we have to count the term frequency of all the terms in each3.
document:

D1 = {(THE,1),(CAT,1),(CHASES,1),(RAT,1)}

D2 = {(THE,1),(DOG,1),(CHASES,1),(CAT,1)}

D3 = {(THE,1),(MAN,1),(WALKS,1),(ON,1),(MAT,1)}

Now we will create a term-document matrix with document IDs as rows, unique4.
terms as columns, and term frequency as cell values, as follows:

Take a while and understand what is happening here: we have put 1 in places where the
word occurs in the sentences and 0 where the word does not.

Now observe that we have represented our documents in the form of a numerical matrix
using the term frequency in each document.

Now, in this term-matrix document, also known as TDM, we can directly apply similarity
metrics such as cosine similarity.
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The previous figure visually represents the similarity between the documents after
calculating the cosine angle. From the figure, we can infer that the angle between D1 and D2
is less and that between D1 and D3 is more, indicating that D1 is more similar to D2 than
D3.

Term frequency inverse document frequency
The earlier approach is also known as the bag of words approach where we just have to find
the frequency of each term in each document and numerically represent it in a TDM. But
inherently, there is a flaw in this approach. This approach gives more weightage or
importance to the terms that occur more frequently and less importance to the rarely
occurring terms. It is important to understand that if a term occurs more frequently in most
document collections, that term will not contribute as a differentiator in identifying a
document. Similarly, a term which occurs more frequently in a document and less
frequently in the whole of the document collection will contribute as a differentiator in
identifying a particular document. This scaling down of weightage to more frequently
occurring terms in the document collection and scaling up the weightage to more frequently
occurring terms in document but less frequently in all of the document collection can be
achieved using term frequency inverse document frequency (tf-idf).
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The tf-idf can be computed as a product of term frequency of document and inverse
document frequency of the term:

tf-idf = tf X idf

Here, idf is defined as follows:

idf = log(D/(1+ n(d,t)))

Here, D is the total number of document collections, and n(d,t) is the number of times a
term t occurs in all the documents.

Let's compute TDM in terms of tf-idf for the previous set of documents (D1, D2, D3):

Take the TDM and calculate the term frequency of each term in each of the1.
documents. This is the same as what we have done in the TF section:

In this step, we need to calculate the document frequency (DF), that is, how2.
many times a term occurred in all the document collection. For example, let's
calculate the DF for the term THE. The term is present in all the three documents,
hence its DF will be 3. Similarly, for the term CAT the DF is 2:

In this step, we shall calculate the inverse of document frequency (IDF) using the3.
aforementioned formula for IDF.

So for the term THE, the idf will be given by: idf(THE) = log(3/(1+3)) =
-0.12494
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Compute tf-idf as the product of tf and idf for each of the terms in the whole4.
document collection, as follows:

For example, for the term RAT in D1, the tf-idf will be computed as 1 X
0.4777121 = 0.4777121

Now that we have calculated the tf-idf, we can compare the previous TDM based on tf-df
with the TDM with tf. The main comparisons we can draw are in the differences in
weightages for each of the terms in TDM. More frequent words across the document
collection have got less weightage compared to the rarely occurred words in the document.

Now, on top of this TDM based on tf-idf representation, we can directly apply the similarity
metric measurements.

In this section, we learned about the vector space models and tf, tf-idf concepts, which are
widely used in text analysis. Now the real question is: how do we apply these techniques in
recommendation engines?

Many a time, while building content-based recommendation engines, we will be getting the
user preference data in text format or the features of the items as text. In such cases we
might able to apply the aforementioned techniques to represent the text data as numerical
vectors.

Also many times we need to find the feature importance or feature weightage to the item
features while building personalized content-based recommendation engines. In such cases,
vector space models concepts are very useful.

The following code snippet shows how to calculate tfidf in R. In the code, we use
TermDocumentMatrix() and weightTFidf() to calculate the term document matrix and
tfidf respectively available in the tm package in R. The inspect() method is used to
attain the results:

library(tm)
data(crude)
tdm <- TermDocumentMatrix(crude,control=list(weighting =   function(x)
weightTfIdf(x, normalize =TRUE), stopwords = TRUE))
inspect(tdm)
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The following screenshot just shows a very small portion of the large document term:

Evaluation techniques
In the previous sections, we saw various data mining techniques used in recommender
systems. In this section, we will learn how to evaluate models built using data mining
techniques. The ultimate goal for any data analytics model is to perform well on future
data. This objective can be achieved only if we build a model, which is efficient and robust
during the development stage.

While evaluating any model, the most important things we need to consider are as follows:

Whether the model is overfitting or underfitting
How well the model fits the future data or the test data

Underfitting, also known as bias, is a scenario in which the model doesn't even perform
well on training data; this means that we are fitting a less robust model to the data; for
example, letting the data be distributed non-linearly and fitting it with a linear model. From
the following image, we see that data is non-linearly distributed. Assume that we have
fitted a linear model (orange line). In this case, during the model-building stage itself, the
prediction power will be low.
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Overfitting is a scenario in which the model performs well on training data but does really
bad on test data. This scenario arises when the model memorizes the data pattern rather
than learning from the data; for example, letting the data be distributed non-linearly and
fitting a complex model (green line). In this case, we observe that the model is fitted very
close to the data distribution, taking care of every up and down. In this case, the model is
most likely to fail on previously unseen data:

The preceding figure shows simple, complex, and appropriately fitted models training data.
The green fit represents overfitting, the orange line represents underfitting, the black and
blue lines represent the appropriate model, which is a trade-off between the underfit and
the overfit.

Any fitted model is evaluated to avoid the aforementioned scenarios using cross-validation,
regularization, pruning, model comparisons, ROC curves, confusion matrix, and so on.

Cross-validation
This is very popular technique for model evaluation for almost all models. In this technique,
we divide the original data into multiple folds/sets (say 5) of training dataset and test
dataset. At each fold iteration the model is built using the training dataset and evaluated
using the test dataset. This process is repeated for all the folds. The test errors are calculated
for very iteration. The average test error is calculated to generalize the model accuracy at
the end of all the iterations.
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Cross-validation implementation is explained in Chapter 5, Building Collaborative Filtering
Recommendation Engines.

Regularization
In this technique, the data variables are penalized to reduce the complexity of the model
with the objective of minimizing the cost function. There are the two most popular
regularization techniques: Ridge Regression and Lasso Regression. In both the techniques,
we try to reduce the variable coefficients to zero so less number of variables will fit the data
optimally.

The popular evaluation metrics for recommendation engines are as follows:

Root-mean-square error (RMSE)
Mean absolute error (MAE)
Precision and recall

Root-mean-square error (RMSE)
Root-mean-square error is one of the most popular, frequently used, simple measures to
find the accuracy of a model. In a general sense, it is the difference between the actual and
predicted values. By definition, it is the squared root of mean square error, as given by the
following equation:

Here, Xact refers to the observed values, and Xpred refers to the predicted values.

How is RMSE applicable to recommendation engines?
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One of the core tasks in recommendation engines is to predict the preference values for non-
rated items for particular users. We use many approaches discussed in previous sections to
predict these non-rated preference values. Consider the following rating matrix used for
building a recommendation model. Assume that our recommendation engine model has
predicted all the empty cells in the following figure let they be represented as r hat. Also
assume that we know the actual values of these predicted empty cells; let they be
represented as r.

Now use the values of r hat and r in the preceding equation to calculate the model accuracy
of the predictive power of the recommendation engine.

Mean absolute error (MAE)
Another popular evaluation technique for the data-mining model is mean absolute error
(MAE). This evaluation metric is very similar to RMSE and is given by the following
equation:

This is a very simple measure computed as mean error between predicted and actual
values. MAE is applied in recommendation engines as a way to evaluate the model.
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Precision and recall
After we have deployed a recommendation engine in production, we will be interested only
if the suggested recommendations are accepted by the users. How do we measure the
effectiveness of the recommendation engine in terms of whether the model is generating
valid recommendations? To measure the effectiveness, we can borrow the precision-recall
evaluation technique, a popular technique in evaluating a classification model. The
preceding discussion about whether a served recommendation is useful or not for a user
can be treated as the binary class label of a classification model, and then we can calculate
the precision-recall.

To understand precision-recall, we should understand a few more metrics that go together
with precision-recall, such as true positive, true negative, false positive, and true negative.

To build what is popularly known as a confusion matrix, as shown next, let's take an
example of online news recommending site, which contains 50 web pages.

Let's say we have generated 35 recommendations to user A. Of these, A has clicked on 25
suggested web pages, and 10 web pages are non-clicked. Now with this information, we
create a table with the number of clicks, as follows:

In the top-left column, enter the count of suggested links that A has clicked on
In the top-right column, enter the count of suggested links that A has not clicked
on
In the bottom-left column, enter the count of links that A has clicked on but have
not been suggested
In the bottom-right column, enter the count of links that A has not clicked on and
have not been suggested:

The top-left count is called true positive (tf), which indicates the count of all the
responses where the actual response is positive and the model predicted as
positive
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The top-right count is called false positive (fp), which indicates the count of all
the responses where the actual response is negative but the model predicted as
positive, in other words, a FALSE ALARM
The bottom-left count is called false negative (fn), which indicates the count of
all the responses where the actual response is positive but the model predicted as
negative; in general, we call it A MISS
The bottom-right count is called true negative (tn), which indicates the count of
all the responses where the actual response is negative and the model predicted
negative.

Take a look at the following table:

Using the preceding information, we shall compute precision-recall metrics, as follows:

Precision is calculated by true-positive divided by the sum of true-positive and false-
positive. Precision indicates what per cent of the total recommendations are useful.

Recall is calculated by true-positive divided by the sum of true positive and false negative.
Recall indicates of the total recommendations what percentage of recommendations is
useful.
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Precision and recall are both required while evaluating a recommendation model.
Sometimes we would be interested in generating good recommendations with high
precision, and other times we would be interested in generating recommendations with
high recall. But the problem with these two is that if we focus on improving one metric, the
other metric suffers. We need to choose an optimal trade-off between precision and recall
based on our requirements. The implementations for precision-recall is covered in Chapter
5, Building Collaborative Filtering Recommendation Engines.

Summary
In this chapter, we saw various data-mining steps that are popularly used in building
recommendation engines. We started by learning similarity calculations, such as Euclidean
distance measures, followed by mathematical models, such as matrix factorization
techniques. Then we covered supervised and unsupervised machine learning techniques,
such as regression, classification, clustering techniques, and dimensionality reduction
techniques. In the last sections of the chapter, we covered how information retrieval
methods from natural language processing, such as vector space models, can be used in
recommendation engines. We concluded the chapter by covering popular evaluating
metrics. Till now we have covered theoretical background required for building
recommendation engines. In the next chapter, we will learn building collaborative filtering
recommendation engines in R and Python.



5
Building Collaborative Filtering

Recommendation Engines
In this chapter, we learn how to implement collaborative filtering recommendation systems
using popular data analysis programming languages, R and Python. We will learn how to
implement user-based collaborative filtering and item-based collaborative filtering in R and
Python programming languages.

In this chapter, we learn about:

The Jester5k dataset we will be using for this chapter
Exploring the dataset and understanding the data
Recommendation engine packages/libraries available in R and Python
Building user-based collaborative filtering in R
Building item-based collaborative filtering in R
Building user-based collaborative filtering in Python
Item-based collaborative filtering in Python
Evaluating the model

The recommenderlab, R package is a framework for developing and testing
recommendation algorithms including user-based collaborative filtering, item-based
collaborative filtering, SVD, and association rule-based algorithms, which are used to build
recommendation engines. This package also provides basic infrastructure or mechanisms to
develop our own recommendation engine methodology.
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Installing the recommenderlab package in
RStudio
The following code snippet, will install the recommenderlab package into RStudio, if it is
not available:

if(!"recommenderlab" %in% rownames(installed.packages())){
install.packages("recommenderlab")}

First the r-environment checks if there are any previous installations of the recommender
lab package, if none are found then it installs as shown below:

Loading required package: recommenderlab
Error in .requirePackage(package) :
  unable to find required package 'recommenderlab'
In addition: Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE,
logical.return = TRUE,  :
  there is no package called 'recommenderlab'
Loading required package: recommenderlab
install.packages("recommenderlab")
Installing package into 'path to installation folder/R/win-library/3.2'
(as 'lib' is unspecified)
trying URL
'https://cran.rstudio.com/bin/windows/contrib/3.2/recommenderlab_0.2-0.zip'
Content type 'application/zip' length 1405353 bytes (1.3 MB)
downloaded 1.3 MB
package 'recommenderlab' successfully unpacked and MD5 sums checked

The following code snippet using library() loads the recommenderlab package into the
r-environment:

library(recommenderlab)

Loading required package: Matrix
Loading required package: arules

Attaching package: 'arules'

The following objects are masked from 'package:base':

    abbreviate, write

Loading required package: proxy

Attaching package: 'proxy'
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The following object is masked from 'package:Matrix':

    as.matrix

The following objects are masked from 'package:stats':

    as.dist, dist

The following object is masked from 'package:base':

    as.matrix

Loading required package: registry

To get help on the recommenderlab package using the help function, run the following
command in Rstudio:

help(package = "recommenderlab")

Check the help page for details on the usage of the package by clicking on the links
provided:
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Datasets available in the recommenderlab
package
Like any other package available in R, recommenderlab also comes with default datasets.
Run the following command to show the available packages:

data_package <- data(package = "recommenderlab")
data_package$results[,c("Item","Title")]

Out of all the available datasets, we have chosen to use the Jester5k dataset for
implementing user-based collaborative filtering and item-based collaborative filtering
recommendation engines using R.

Exploring the Jester5K dataset
In this section, we shall explore the Jester5K dataset as follows:

Description
The dataset contains a sample of 5000 users from the Jester Online Joke Recommender
System anonymous ratings data, collected between April 1999 and May 2003.

Usage
data(Jester5k)
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Format
The format of Jester5k is: Formal class 'realRatingMatrix' [package
"recommenderlab"].

The format of JesterJokes is a vector of character strings.

Details
Jester5k contains a 5000 x 100 rating matrix (5000 users and 100 jokes) with ratings
between -10.00 and +10.00. All selected users have rated 36 or more jokes.

The data also contains the actual jokes in JesterJokes.

The number of ratings present in the real-rating matrix is represented as follows:

nratings(Jester5k)

[1] 362106

Jester5k
5000 x 100 rating matrix of class 'realRatingMatrix' with 362106 ratings.

You can display the class of the rating matrices by running the following command:

class(Jester5k)
[1] "realRatingMatrix"
attr(,"package")
[1] "recommenderlab"

The recommenderlab package efficiently stores the rating information in a compact way.
Usually, rating matrices are sparse matrices. For this reason, the realRatingMatrix class
supports a compact storage of sparse matrices.

Let's compare the size of Jester5k with the corresponding R matrix to understand the
advantage of the real rating matrix, as follows:

object.size(Jester5k)
4633560 bytes
#convert the real-rating matrix into R matrix
object.size(as(Jester5k,"matrix"))
4286048 bytes
object.size(as(Jester5k, "matrix"))/object.size(Jester5k)
0.925001079083901 bytes
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We observe that the real-rating matrix stores 0.92 times less space than the R matrix. For
collaborative filtering methods, which are memory-based models, where all the data is
loaded into the memory while generating recommendations, storing data efficiently is very
important. The recommenderlab package does this job efficiently.

The recommenderlab package exposes many functions which can be operated on using
the rating matrix object. Run the following command to see the available methods:

methods(class = class(Jester5k))

Run the following commands to see the available recommendation algorithms in the
recommenderlab package:

names(recommender_models)
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The following code snippet displays the same result as in the previous image, lapply()
function applies the function to all the elements of the list, in our case, for each of the items
in the recommender_models object, lapply will extract the description and display the
results as follows:

lapply(recommender_models, "[[", "description")
$IBCF_realRatingMatrix
[1] "Recommender based on item-based collaborative filtering (real data)."

$POPULAR_realRatingMatrix
[1] "Recommender based on item popularity (real data)."

$RANDOM_realRatingMatrix
[1] "Produce random recommendations (real ratings)."

$RERECOMMEND_realRatingMatrix
[1] "Re-recommends highly rated items (real ratings)."

$SVD_realRatingMatrix
[1] "Recommender based on SVD approximation with column-mean imputation
(real data)."

$SVDF_realRatingMatrix
[1] "Recommender based on Funk SVD with gradient descend (real data)."

$UBCF_realRatingMatrix
[1] "Recommender based on user-based collaborative filtering (real data)."

Exploring the dataset
In this section let's explore the data in more detail. To find the dimensions of the data and
the type of data, run the following commands:

There are 5000 users and 100 items:

dim(Jester5k)

[1] 5000  100
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The data is of R Matrix:

class(Jester5k@data)

[1] "dgCMatrix"
attr(,"package")
[1] "Matrix"

Exploring the rating values
The following code snippet will help us understand the rating values distribution:

Rating distribution is given as:

hist(getRatings(Jester5k), main="Distribution of ratings")

The preceding image shows the frequency of the ratings available from the Jester5K
dataset. We can observe that the negative ratings are more or less of uniform distribution or
the same frequency, and the positive ratings are of a higher frequency and are declining
towards the right of the plot. This may attribute to the bias induced by the ratings given by
the users.
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Building user-based collaborative filtering
with recommenderlab
Run the following code in order to load the recommenderlab library and data into the R
environment:

library(recommenderlab)
data("Jester5k")

Let's look at the sample rating data of the first six users on the first 10 jokes. Run the
following command:

head(as(Jester5k,"matrix")[,1:10])

We have looked at exploring the data in the previous section so we will get directly to
building a user-based collaborative recommender system.

This section is divided as follows:

Building a base recommender model for benchmarking by splitting the data into
80% training data and 20% test data.
Evaluating the recommender model using a k-fold cross-validation approach
model
Parameter tuning for the recommender model
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Preparing training and test data
For building and evaluating a recommender model, we need training data and test data.
Run the following command to create it:

We use the seed function for generating reproducible results:

set.seed(1)
which_train <- sample(x = c(TRUE, FALSE), size = nrow(Jester5k),replace =
TRUE, prob = c(0.8, 0.2))
head(which_train)
[1]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE

The previous code creates a logical object with an equal length to the number of users. True
indexes will be part of the train set and false indexes will be part of the test set.

rec_data_train <- Jester5k[which_train, ]
rec_data_test <- Jester5k[!which_train, ]

dim(rec_data_train)
[1] 4004  100

dim(rec_data_test)
[1] 996  100

Creating a user-based collaborative model
Now, let's create a recommendation model on the whole data of Jester5k. Before that, let's
explore the recommender models available and their parameters in the recommenderlab
package as follows:

recommender_models <- recommenderRegistry$get_entries(dataType =
"realRatingMatrix")

recommender_models
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Image we just saw displays the 6 different recommender models available and its
parameters.

Run the following code to build a user-based collaborative filtering model:

recc_model <- Recommender(data = rec_data_train, method = "UBCF")
recc_model

Recommender of type 'UBCF' for 'realRatingMatrix'
learned using 4004 users.
recc_model@model$data

4004 x 100 rating matrix of class 'realRatingMatrix' with 289640 ratings.
Normalized using center on rows.

The recc_model@model$data object contains the rating matrix. The reason for this is that
UBCF is a lazy-learning technique, which means that it needs to access all the data to
perform a prediction.

Predictions on the test set
Now that we have built the model, let's predict the recommendations on the test set. For
this we will use the predict() function available in the library. We generate 10
recommendations per user. See the following code for the predictions:

n_recommended <- 10
recc_predicted <- predict(object = recc_model,newdata = rec_data_test, n =
n_recommended)
recc_predicted
Recommendations as 'topNList' with n = 10 for 996 users.

#Let's define list of predicted recommendations:
rec_list <- sapply(recc_predicted@items, function(x){
  colnames(Jester5k)[x]
})

The resultant object is a list type given by the following code:

class(rec_list)
[1] "list"
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The first two recommendations are given as follows:

rec_list [1:2]
$u21505
 [1] "j81"  "j73"  "j83"  "j75"  "j100" "j80"  "j72"  "j95"  "j87"  "j96"

$u5809
 [1] "j97" "j93" "j76" "j78" "j77" "j85" "j89" "j98" "j91" "j80"

We can observe that for user u21505, the top 10 recommendations are given as j81, j73,
j83, ... j96.

The following image shows the recommendations for four users:

Let's see how many recommendations are generated for all the test users by running the
following code:

number_of_items = sort(unlist(lapply(rec_list, length)),decreasing = TRUE)
table(number_of_items)

0   1   2   3   4   5   6   7   8   9  10
286   3   2   3   3   1   1   1   2   3 691

From the above results, we see that for 286 users, zero recommendations were generated.
The reason is that they have rated all the movies in the original dataset. For 691 users, 10
ratings for each of them has been generated, the reason is that in the original dataset, they
have not rated for any movies. Other users who have received 2, 3, 4, and so on
recommendations means that they have recommended very few movies.
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Analyzing the dataset
Before we evaluate the model, let's take one step back and analyze the data. By analyzing
the number of ratings given by all the users for the jokes, we can observe that there are 1422
people who have rated all 100 jokes, which seems to be unusual as there are very few
people who have rated 80 to 99 jokes. Further analyzing the jokes we find that, there are
221, 364, 312, and 131 users who have rated 71, 72, 73, and 74 jokes respectively which
seems to be unusual compared to other joke ratings.

Run the following code to extract the number of ratings given to each joke:

table(rowCounts(Jester5k))

For the next step, let's remove the records of users who have rated 80 or more jokes as
follows:

model_data = Jester5k[rowCounts(Jester5k) < 80]
dim(model_data)
[1] 3261  100

The dimension has been reduced from 5000 to 3261 records.

Now let's analyze the average ratings given by each user. A boxplot shows us the average
distribution of the joke ratings.

boxplot(model_data)
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The preceding image shows us that there are very few ratings that deviate from normal
behavior. From the preceding image we see that the average ratings that are above 7
(approximately) and below -5 (approximately) are kind of outliers and are less in number.
Let's see the count by running the following code:

boxplot(rowMeans(model_data [rowMeans(model_data)>=-5 &
rowMeans(model_data)<= 7]))

Dropping users who have given very low average ratings and very high average ratings.

model_data = model_data [rowMeans(model_data)>=-5 & rowMeans(model_data)<=
7]
dim(model_data)
[1] 3163  100
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Let's examine the rating distribution of the first 100 users in the data as follows:

image(model_data, main = "Rating distribution of 100 users")

Evaluating the recommendation model using the
k-cross validation
The recommenderlab package provides an infrastructure for evaluating the models using
the evaluationScheme() function. By definition, from the Cran website,
evaluationScheme creates an evaluationScheme object from a data set. The scheme can be a simple
split into training and test data, k-fold cross-evaluation or using k independent bootstrap samples.
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The following are the arguments for the evaluationScheme() function:

We use cross-validation method to split the data, for example the 5-fold cross-validation
approach divides the training data into five smaller sets where four sets will be used for
training the model and the remaining one set is used for evaluating the model. Let's define
the parameters into minimum good ratings, number of folds for cross-validation method,
and split method as follows:

items_to_keep <- 30
rating_threshold <- 3
n_fold <- 5 # 5-fold
eval_sets <- evaluationScheme(data = model_data, method = "cross-
validation",train = percentage_training, given = items_to_keep, goodRating
= rating_threshold, k = n_fold)

Evaluation scheme with 30 items given
Method: 'cross-validation' with 5 run(s).
Good ratings: >=3.000000
Data set: 3163 x 100 rating matrix of class 'realRatingMatrix' with 186086
ratings.

Let's examine the size of the five sets formed by the cross-validation approach as follows:

size_sets <- sapply(eval_sets@runsTrain, length)
 size_sets
[1] 2528 2528 2528 2528 2528
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In order to extract the sets, we need to use getData(). There are three sets:

train: This is the training set
known: This is the test set, with the item used to build the recommendations
unknown: This is the test set, with the item used to test the recommendations

Let's take a look at the training set in the following code:

getData(eval_sets, "train")
2528 x 100 rating matrix of class 'realRatingMatrix' with 149308 ratings.

Evaluating user-based collaborative filtering
Now let's evaluate the models, let's set the parameters model_to_evaluate with user-
based collaborative filtering and model_parameters with NULL for using default settings
as follows:

model_to_evaluate <- "UBCF"
model_parameters <- NULL

The next step is to build the recommender model using the recommender() function as
follows:

eval_recommender <- Recommender(data = getData(eval_sets, "train"),method =
model_to_evaluate, parameter = model_parameters)

Recommender of type 'UBCF' for 'realRatingMatrix'
learned using 2528 users

We have seen that the user-based recommender model has been learned with a training
data of 2528 users. Now we can predict the known ratings in eval_sets and evaluate
the results with unknown sets as described earlier.

Before making the predictions for the known ratings, we have to set the number of items to
be recommended. Next, we have to provide the test set to the predict() function for
prediction. The prediction of ratings is done by running the following command:

items_to_recommend <- 10
eval_prediction <- predict(object = eval_recommender, newdata
=getData(eval_sets, "known"), n = items_to_recommend, type = "ratings")

eval_prediction
635 x 100 rating matrix of class 'realRatingMatrix' with 44450 ratings
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Executing the predict() function will take time because the user-based collaborative
filtering approach is memory-based and a lazy learning technique implemented at run time,
to show that the whole dataset is loaded during the prediction.

Now we shall evaluate the predictions with the unknown sets and estimate the model
accuracy with metrics such as precision, recall, and F1 measure. Run the following code to
calculate the model accuracy metrics by calling the calcPredicitonAccuracy() method:

eval_accuracy <- calcPredictionAccuracy(  x = eval_prediction, data =
getData(eval_sets, "unknown"), byUser = TRUE)
head(eval_accuracy)
           RMSE       MSE      MAE
u17322 4.536747 20.582076 3.700842
u13610 4.609735 21.249655 4.117302
u5462  4.581905 20.993858 3.714604
u1143  2.178512  4.745912 1.850230
u5021  2.664819  7.101260 1.988018
u21146 2.858657  8.171922 2.194978

By setting byUser = TRUE, we are calculating the model accuracy for each user. Taking the
average will give us the overall accuracy as follows:

apply(eval_accuracy,2,mean)
     RMSE       MSE       MAE
 4.098122 18.779567  3.377653

By setting byUser=FALSE, in the previous calcPredictionAccuracy() we can calculate
the overall model accuracy given by the following:

eval_accuracy <- calcPredictionAccuracy(  x = eval_prediction, data =
getData(eval_sets, "unknown"), byUser =
    FALSE)

eval_accuracy
    RMSE       MSE       MAE
 4.372435 19.118191  3.431580
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In the previous approach, we evaluated the model accuracy using the root mean squared
error (RMSE), and mean absolute error (MAE), but we can also evaluate the model
accuracy using precision/recall For this, we use the evaluate() function and then the
result of the evaluate() method is used to create a confusion matrix containing
precision/recall/f1 measures as follows:

results <- evaluate(x = eval_sets, method = model_to_evaluate, n = seq(10,
100, 10))

head(getConfusionMatrix(results)[[1]])

         TP        FP        FN        TN precision    recall       TPR
FPR
10  6.63622  3.363780 10.714961 49.285039 0.6636220 0.4490838 0.4490838
0.05848556
20 10.03150  9.968504  7.319685 42.680315 0.5015748 0.6142384 0.6142384
0.17854766
30 11.20787 18.792126  6.143307 33.856693 0.3735958 0.6714050 0.6714050
0.34877101
40 11.91181 28.088189  5.439370 24.560630 0.2977953 0.7106378 0.7106378
0.53041204
50 12.96850 37.031496  4.382677 15.617323 0.2593701 0.7679658 0.7679658
0.70444585
60 14.82362 45.176378  2.527559  7.472441 0.2470604 0.8567522 0.8567522
0.85919995

The first four columns contain the true-false positives/negatives, and they are as follows:

True Positives (TP): These are recommended items that have been rated correctly
False Positives (FP): These are recommended items that haven't been rated
False Negatives (FN): These are not recommended items that have been rated
True Negatives (TN): These are not recommended items that haven't been rated

A perfect (or overfitted) model would have only TP and TN.

 



Building Collaborative Filtering Recommendation Engines

[ 140 ]

If we want to take account of all the splits at the same time, we can just sum up the indices
as follows:

columns_to_sum <- c("TP", "FP", "FN", "TN")
indices_summed <- Reduce("+", getConfusionMatrix(results))[,
columns_to_sum]
head(indices_summed)
         TP        FP       FN        TN
10 32.59528  17.40472 53.22520 246.77480
20 49.55276  50.44724 36.26772 213.73228
30 55.60787  94.39213 30.21260 169.78740
40 59.04724 140.95276 26.77323 123.22677
50 64.22205 185.77795 21.59843  78.40157
60 73.67717 226.32283 12.14331  37.85669

Since summarizing the model is difficult by referring to the above table, we can use a ROC
curve to evaluate the model. Use plot() to build the ROC plot as follows:

plot(results, annotate = TRUE, main = "ROC curve")
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The preceding plot shows the relation between True Positive Rate (TPR) and False Positive
Rate (FPR), but we have to choose the values in such a way that we give a trade-off between
TPR and FPR. In our case, we observe that nn=30 is a very good trade-off since when
considering neighbors of 30 we have TPR closer to 0.7, FPR is 0.4 and when moving to
nn=40 the TPR is still close to 0.7 but the FPR has been changed to 0.4. This means that the
False Positive Rate has been increased.

Building an item-based recommender model
As with UBCF, we use the same Jester5k dataset for the item-based recommender system.
In this section, we do not explore the data as we have already done so in the previous
section. We first remove the user data of those who have rated all the items and also those
records who have rated more than 80 as follows:

library(recommenderlab)
data("Jester5k")
model_data = Jester5k[rowCounts(Jester5k) < 80]
model_data
[1] 3261  100

Now let's see how the average ratings are distributed for each user:

boxplot(rowMeans(model_data))
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The following code snippet calculates the average ratings given by each user and identifies
users who have given extreme ratings – either very high ratings or very low ratings:

From the below results, we observe that there are 19 records with very high average ratings
and 79 records with very low ratings, compared with the majority of users:

dim(model_data[rowMeans(model_data) < -5])
[1]  79 100
dim(model_data[rowMeans(model_data) > 7])
[1]  19 100

Of the total 3261 records, only 98 records had much less than the average and much more
than the average ratings, so we removed these from our dataset as follows:

model_data = model_data [rowMeans(model_data)>=-5 & rowMeans(model_data)<=
7]
model_data
[1] 3163  100

From here, we divide the sections as follows:

Building the IBCF recommender model using the training and test data.
Evaluating the model
Parameter tuning

Building an IBCF recommender model
The first step in building any recommender model is to prepare the training data.
Previously, we have prepared the data required for building the model by removing
outlying data. Now run the following code to divide the available data into two sets: 80%
training set and 20% test set. We build the recommender model using the training data and
generate the recommendations on the test set.

The following code first creates a logical object of the same length as the original dataset
containing 80% elements as TRUE and 20% as a test:

which_train <- sample(x = c(TRUE, FALSE), size = nrow(model_data),
 replace = TRUE, prob = c(0.8, 0.2))
class(which_train)
[1] "logical"
head(which_train)
[1] TRUE TRUE TRUE TRUE TRUE TRUE
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Then we use the logical object in the model_data to generate the training set as follows:
 model_data_train <- model_data[which_train, ]
dim(model_data_train)
[1] 2506  100

Then we use the logical object in the model_data to generate the test set as follows:

 model_data_test <- model_data[!which_train, ]
 dim(model_data_test)
[1] 657 100

Now that we have prepared the training set and the test set, let's train the model and
generate the top recommendations on the test set.

For model building, as mentioned in the UBCF section, we use the same recommender()
function available in the recommenderlab package. Run the following code to train the
model with training data.

Set the parameters for the recommender() function. We set the model to evaluate as
"IBCF" and k=30. k is the number of neighbors to be considered while calculating the
similarity values as follows:

model_to_evaluate <- "IBCF"

model_parameters <- list(k = 30)

The following code snippet shows building the recommendation engine model using
the recommender() function and its input parameters such as input data, model to
evaluate the parameters, and the k parameter:

model_recommender <- Recommender(data = model_data_train,method =
model_to_evaluate, parameter = model_parameters)

The IBCF model object is created as a model_recommender. This model is trained and
learned using the 2506 training set we created earlier as follows:

model_recommender
Recommender of type 'IBCF' for 'realRatingMatrix'  learned using 2506
users.
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Now that we have created the model, let's explore the model bit. We use getModel()
available in the recommenderlab to extract the model details as follows:

From the above results, the important parameters to note are k value, the default similarity
value, and method, cosine similarity.

The final step is to generate the recommendations on the test set. Run the following code on
the test set and generate the recommendations.

items_to_recommend is the parameter to set the number of recommendations to be
generated for each user:

items_to_recommend <- 10
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Call the predict() method available in the reocommenderlab package to predict the
unknowns in the test set:

model_prediction <- predict(object = model_recommender, newdata =
model_data_test, n = items_to_recommend)

model_prediction
Recommendations as 'topNList' with n = 10 for 657 users.

print(class(model_prediction))
[1] "topNList"
attr(,"package")
[1] "recommenderlab"

We can get the slot details of the prediction object using the slotNames() method:

slotNames(model_prediction)
[1] "items"      "itemLabels" "n"

Let's have a look of the predictions generated for the first user in the test set:

 model_prediction@items[[1]]
 [1]  89  76  72  87  93 100  97  80  94  86

Let's add the item labels to each of the predictions:

 recc_user_1  = model_prediction@items[[1]]

 jokes_user_1 <- model_prediction@itemLabels[recc_user_1]

 jokes_user_1
 [1] "j89"  "j76"  "j72"  "j87"  "j93"  "j100" "j97"  "j80"  "j94"  "j86"

Model evaluation
Let's take one step back to evaluate the recommender model before we generate the
predictions. As we saw in UBCF, we can use the available evaluationScheme() method.
We use the cross-validation setting to generate the training and test sets. Then we make
predictions on each test set and evaluate the model accuracy.
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Run the following code to generate the training and test sets.

n_fold defines the 4-fold cross-validation, that divides the data into 4 sets; 3 training sets
and 1 test set:

n_fold <- 4

items_to_keep defines the minimum number of items to use to generate
recommendations:

items_to_keep <- 15

rating_threshold defines the minimum rating which is considered as a good rating:

rating_threshold <- 3

evaluationScheme method creates the test sets:

eval_sets <- evaluationScheme(data = model_data, method = "cross-
validation",k = n_fold, given = items_to_keep, goodRating
=rating_threshold)
size_sets <- sapply(eval_sets@runsTrain, length)
size_sets
[1] 2370 2370 2370 2370

Set the model_to_evaluate to set the recommender method to be used.
model_parameters defines the model parameters such as the number of neighbors to be
considered while computing the similarity using cosine. For now we will set it as NULL in
order to make the model choose the default values, as follows:

model_to_evaluate <- "IBCF"
model_parameters <- NULL

Use the recommender() method to generate the model. Let's understand each parameter of
the recommender() method:

getData extracts the training data from eval_sets and passes it on to the
recommender() method as follows:

getData(eval_sets,"train")
2370 x 100 rating matrix of class 'realRatingMatrix' with 139148 ratings
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Since we are using 4-folds cross-validation, the recommender() method uses the three sets
from eval_sets for training and the remaining one set for testing/ evaluating the model as
follows:

eval_recommender <- Recommender(data = getData(eval_sets, "train"),method =
model_to_evaluate, parameter = model_parameters)
#setting the number of items to be set for recommendations
items_to_recommend <- 10

Now we use the built model to make predictions on a "known" dataset from eval_sets.
As seen before, we use the predict() method to generate the predictions as follows:

eval_prediction <- predict(object = eval_recommender, newdata =
getData(eval_sets, "known"), n = items_to_recommend, type = "ratings")

class(eval_prediction)
[1] "realRatingMatrix"
attr(,"package")
[1] "recommenderlab"

Model accuracy using metrics
Until now, the procedure has been the same as for making the initial predictions, now we
will see how to evaluate the model accuracy for the predictions made on the “known” set of
test data from eval_sets. As we saw in the UBCF section, we use the
calcPredictionAccuracy() method to calculate the prediction accuracy.

We use the calcPredictionAccuracy() method and pass the "unknown" dataset
available in the eval_sets as follows:

eval_accuracy <- calcPredictionAccuracy(x = eval_prediction, data =
getData(eval_sets, "unknown"), byUser = TRUE)

head(eval_accuracy)
           RMSE      MSE      MAE
u238   4.625542 21.39564  4.257505
u17322  4.953789  24.54003  3.893797
u5462  4.685714   21.95591  4.093891
u13120   4.977421  24.77472  4.261627
u12519   3.875182  15.01703  2.750987
u17883 7.660785 58.68762 6.595489
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Using byUser = TRUE in the previous method calculates the accuracy for
each user. In the table above we can see that for user – u238 the RMSE is
4.62 and MAE is 4.25

If we want to see the accuracy of the whole model, just calculate the mean of each column,
that is to say the average for all the users as follows:

apply(eval_accuracy,2,mean)
  RMSE      MSE      MAE
 4.45511 21.94246  3.56437

By setting byUser=FALSE we can calculate the model accuracy for the whole model:

eval_accuracy <- calcPredictionAccuracy(x = eval_prediction, data =
getData(eval_sets, "unknown"), byUser = FALSE)

eval_accuracy
     RMSE       MSE       MAE
 4.672386 21.831190  3.555721

Model accuracy using plots
Now we can see the model accuracy using Precision-Recall, ROC curves, and
precision/recall curves. These curves help us to decide the trade-off between Precision-
Recall while choosing the parameters we use for the recommender models, IBCF in our
case.

We use the evaluate() method and then set the n value which defines the number of
nearest neighbors while calculating the similarities between items as follows:

Running the following evaluate method makes the model run four times for each dataset:

results <- evaluate(x = eval_sets, method = model_to_evaluate, n =
seq(10,100,10))
IBCF run fold/sample [model time/prediction time]
 1  [0.145sec/0.327sec]
 2  [0.139sec/0.32sec]
 3  [0.139sec/0.32sec]
 4  [0.137sec/0.322sec]
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Let's see the model accuracy at each fold:

results@results[1]
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Let's sum up all the 4-fold results using the following code:

columns_to_sum <- c("TP", "FP", "FN", "TN","precision","recall")
indices_summed <- Reduce("+", getConfusionMatrix(results))[,
columns_to_sum]

From the previous table, we can observe that the model accuracy, Precision-Recall values
are good for n values of 30 and 40. The same results can be visually inferred using ROC
curves and Precision-Recall plots as follows:

plot(results, annotate = TRUE, main = "ROC curve")
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plot(results, "prec/rec", annotate = TRUE, main = "Precision-recall")

Parameter tuning for IBCF
While building the IBCF model there are a few places where we can choose the optimal
values before we generate recommendations for building a final model:

We have to choose, optimal number of neighbors for calculating the similarities
between items
Similarity method to be used, whether it is the cosine or Pearson method

See the following steps:

First set the different k-values:

vector_k <- c(5, 10, 20, 30, 40)

Use lapply to generate different models using the cosine method and different values of k:

 model1 <- lapply(vector_k, function(k,l){ list(name = "IBCF", param =
list(method = "cosine", k = k)) })
names(model1) <- paste0("IBCF_cos_k_", vector_k)
names(model1) [1] "IBCF_cos_k_5" "IBCF_cos_k_10" "IBCF_cos_k_20"
"IBCF_cos_k_30" [5] "IBCF_cos_k_40" #use Pearson method for similarities
model2 <- lapply(vector_k, function(k,l){ list(name = "IBCF", param =
list(method = "pearson", k = k)) })
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names(model2) <- paste0("IBCF_pea_k_", vector_k)
names(model2) [1] "IBCF_pea_k_5" "IBCF_pea_k_10" "IBCF_pea_k_20"
"IBCF_pea_k_30" [5] "IBCF_pea_k_40"
#now let's combine all the methods:
models = append(model1,model2)

Set the total number of recommendations to be generated:

n_recommendations <- c(1, 5, seq(10, 100, 10))

Call the evaluate method to the build 4-fold methods:

 list_results <- evaluate(x = eval_sets, method = models, n=
n_recommendations)
IBCF run fold/sample [model time/prediction time] 1 [0.139sec/0.311sec] 2
[0.143sec/0.309sec] 3 [0.141sec/0.306sec] 4 [0.153sec/0.312sec]
IBCF run fold/sample [model time/prediction time] 1 [0.141sec/0.326sec] 2
[0.145sec/0.445sec] 3 [0.147sec/0.387sec] 4 [0.133sec/0.439sec]
IBCF run fold/sample [model time/prediction time] 1 [0.14sec/0.332sec] 2
[0.16sec/0.327sec] 3 [0.139sec/0.331sec] 4 [0.138sec/0.339sec] IBCF run
fold/sample [model time/prediction time] 1 [0.139sec/0.341sec] 2
[0.157sec/0.324sec] 3 [0.144sec/0.327sec] 4 [0.133sec/0.326sec]
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Now that we have got the results, let's plot and choose the optimal parameters as follows:

plot(list_results, annotate = c(1,2), legend = "topleft")
title("ROC curve")

From the preceding plot, the best methods are IBCF with cosine similarity with n = 30, and
the next best is the Pearson method with n = 40.

Let's confirm this with the Precision-Recall curve as follows:

plot(list_results, "prec/rec", annotate = 1, legend = "bottomright")
title("Precision-recall")
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From the above plot we see that the best Precision-Recall ratio is achieved when the number
of recommendations = 30 with cosine similarity and n=40. Another good model is achieved
with the Pearson similarity method and n=10.

Collaborative filtering using Python
In the previous section we saw implementations of user-based recommender systems and
item-based recommender systems using the R package, recommenderlab. In this section,
we see UBCF and IBCF implementation using the Python programming language.

For this section, we use the MovieLens 100k dataset, which contains 943 user ratings on
1682 movies. Unlike in R, in Python we do not have a proper Python package dedicated to
building recommender engines, at least the neighborhood-based recommenders such as
user-based/item-based recommenders.

We have the Crab Python package available but it is not actively supported. So I thought of
building a recommender engine using scientific packages in Python such as NumPy,
sklearn, and Pandas.
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Installing the required packages
For this section, please make sure you have the following system requirements:

Python 3.5
Pandas 1.9.2 – Pandas is an open source, BSD-licensed library providing high-
performance, easy-to-use data structures, and data analysis tools for the Python
programming language.
NumPy 1.9.2 – NumPy is the fundamental package for scientific computing with
Python.
sklearn 0.16.1

The best way to install the preceding packages is to install, Anaconda
distribution which will install all the required packages such as Python,
Pandas, and Numpy. Anaconda can be found at:
https://www.continuum.io/downloads

Data source
The MovieLens 100k data can be downloaded from the following link:

http://files.grouplens.org/datasets/movielens/ml-100k.zip

Let's get started with implementing user-based collaborative filtering. Assuming we have
downloaded the data into our local system, let's load the data into a Python environment.

We load the data using the Pandas package and the read_csv() method by passing two
parameters, path and separator as follows:

path = "~/udata.csv"
df = pd.read_csv(path, sep='\t')

The data will be loaded as a DataFrame, a table-like data structure that can easily be used
for data handling and manipulation tasks.

type(df)
<class 'pandas.core.frame.DataFrame'>

 

https://www.continuum.io/downloads
http://files.grouplens.org/datasets/movielens/ml-100k.zip


Building Collaborative Filtering Recommendation Engines

[ 156 ]

Let's see the first six results of the data frame to have a look at how data seems to be using
the head() method available in the Pandas DataFrame object:

df.head()
 UserID  ItemId   Rating  Timestamp
0     196      242       3  881250949
1     186      302       3  891717742
2      22      377       1  878887116
3     244       51       2  880606923
4     166      346       1  886397596

Let's see the column names of the data frame, df using the columns attributes. The result of
the following code snippet shows that there are four columns: UserID, ItemId, Rating,
Timestamp, and that it is of the object datatype:

df.columns
Index([u'UserID', u'ItemId ', u'Rating', u'Timestamp'], dtype='object')

Let's see the size of the data frame by calling the shape attribute; we observe that we have
100k records with 4 columns:

df.shape
(100000, 4)

Data exploration
In this section, we will explore the MovieLens dataset and also prepare the data required for
building collaborative filtering recommendation engines using python.

Let's see the distribution of ratings using the following code snippet:

import matplotlib.pyplot as plt
plt.hist(df['Rating'])
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From the following image we see that we have more movies with 4 star ratings:

Using the following code snippet, we shall see the counts of ratings by applying
the groupby() function and the count() function on DataFrame:
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The following code snippet shows the distribution of movie views. In the following code we
apply the count() function on DataFrame:

plt.hist(df.groupby(['ItemId'])['ItemId'].count())

From the previous image, we can observe that the starting ItemId has more ratings than
later movies.

Rating matrix representation
Now that we have explored the data, let's represent the data in a rating matrix form so that
we can get started with our original task of building a recommender engine.

For creating a rating matrix, we make use of NumPy package capabilities such as arrays
and row iterations in a matrix. Run the following code to represent the data frame in a
rating matrix:

In the following code, first we extract all the unique user IDs and then we
check the length using the shape parameter.
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Create a variable of n_users to find the total number of unique users in the data:

n_users = df.UserID.unique().shape[0]

Create a variable n_items to find the total number of unique movies in the data:

n_items = df['ItemId '].unique().shape[0]

Print the counts of unique users and movies:

print(str(n_users) + ' users')
943 users

print(str(n_items) + ' movies')
1682 movies

Create a zero value matrix of size (n_users x n_items) to store the ratings in the cell of the
matrix ratings:

ratings = np.zeros((n_users, n_items))

For each tuple in the DataFrame, df extracts the information from each column of the row
and stores it in the rating matrix cell value as follows:

for  row in df.itertuples():
ratings[row[1]-1, row[2]-1] = row[3]

Run the loop and the whole DataFrame movie ratings information will be stored in the
matrix ratings of the numpy.ndarray type as follows:

type(ratings)
<type 'numpy.ndarray'>

Now let's see the dimensions of the multidimensional array 'ratings' using the shape
attribute as follows:

ratings.shape
(943, 1682)

Let's see the sample data for how a ratings multidimensional array looks by running the
following code:

ratings
array([[ 5.,  3.,  4., ...,  0.,  0.,  0.],
       [ 4.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  0.,  0., ...,  0.,  0.,  0.],
       ...,
       [ 5.,  0.,  0., ...,  0.,  0.,  0.],
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       [ 0.,  0.,  0., ...,  0.,  0.,  0.],
       [ 0.,  5.,  0., ...,  0.,  0.,  0.]])

We observe that the rating matrix is sparse as we see a lot of zeros in the data. Let's
determine the sparsity in the data, by running the following code:

sparsity = float(len(ratings.nonzero()[0]))
sparsity /= (ratings.shape[0] * ratings.shape[1])
sparsity *= 100
print('Sparsity: {:4.2f}%'.format(sparsity))
Sparsity: 6.30%

We observe that the sparsity is 6.3% that is to say that we only have rating information for
6.3% of the data and for the others it is just zeros. Also please note that, the 0 value we see
in the rating matrix doesn't represent the rating given by the user, it just means that they are
empty.

Creating training and test sets
Now that we have a ratings matrix, let's create a training set and test set to build the
recommender model using a training set and evaluate the model using a test set.

To divide the data into training and test sets, we use the sklearn package's capabilities.
Run the following code to create training and test sets:

Load the train_test_split module into the python environment using the following
import functionality:

from sklearn.cross_validation import train_test_split

Call the train_test_split() method with a test size of 0.33 and random seed of 42:

 ratings_train, ratings_test = train_test_split(ratings,test_size=0.33,
random_state=42)

Let's see the dimensions of the train set:

 ratings_train.shape (631, 1682)
#let's see the dimensions of the test set
ratings_test.shape (312, 1682)

For user-based collaborative filtering, we predict that a user's rating for an item is given by
the weighted sum of all other users' ratings for that item, where the weighting is the cosine
similarity between each user and the input user.
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The steps for building a UBCF
The steps for building a UBCF are:

Creating a similarity matrix between the users
Predicting the unknown rating value of item i for an active user u by calculating
the weighted sum of all the users' ratings for the item.

Here the weighting is the cosine similarity calculated in the previous step
between the user and neighboring users.

Recommending the new items to the users.

User-based similarity calculation
The next step is to create pairwise similarity calculations for each user in the rating matrix,
that is to say we have to calculate the similarity of each user with all the other users in the
matrix. The similarity calculation we choose here is cosine similarity. For this, we make use
of pairwise distance capabilities to calculate the cosine similarity available in the sklearn
package as follows:
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Let's see a sample dataset of the distance matrix:

dist_out

Predicting the unknown ratings for an active user
As previously mentioned, the unknown values can be calculated for all the users by taking
the dot product between the distance matrix and the rating matrix and then normalizing the
data with the number of ratings as follows:

user_pred = dist_out.dot(ratings_train) /
np.array([np.abs(dist_out).sum(axis=1)]).T

Now that we have predicted the unknown ratings for use in the training set, let's define a
function to check the error or performance of the model. The following code defines a
function for calculating the root mean square error (RMSE) by taking the predicted values
and original values. We use sklearn capabilities for calculating RMSE as follows:

from sklearn.metrics import mean_squared_error
def get_mse(pred, actual):
    #Ignore nonzero terms.
    pred = pred[actual.nonzero()].flatten()
    actual = actual[actual.nonzero()].flatten()
    return mean_squared_error(pred, actual)

We call the get_mse() method to check the model prediction error rate as follows:

get_mse(user_pred, ratings_train)
7.8821939915510031
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We see that the model accuracy or RMSE is 7.8. Now let's run the same get_mse()
method on the test data and check the accuracy as follows:

get_mse(user_pred, ratings_test)
8.9224954316965484

User-based collaborative filtering with the k-
nearest neighbors
If we observe the RMSE values in the above model, we can see that the error is a bit higher.
The reason may be that we have chosen all the users' rating information while making the
predictions. Instead of considering all the users, let's consider only the top-N similar users'
ratings information and then make the predictions. This may result in improving the model
accuracy by eliminating some biases in the data.

To explain in a more elaborate way; in the previous code we predicted the ratings of the
users by taking the weighted sum of the ratings of all users, instead we first chose the top-N
similar users for each user and then the ratings were calculated by considering the weighted
sum of the ratings of these top-N users.

Finding the top-N nearest neighbors
Firstly, for computational easiness, we shall choose the top five similar users by setting a
variable, k.

k=5

We use the k-nearest neighbors method to choose the top five nearest neighbors for an
active user. We will see this in action shortly. We choose sklearn.knn capabilities for this
task as follows:

from sklearn.neighbors import NearestNeighbors

Define the NearestNeighbors object by passing k and the similarity method as
parameters:

neigh = NearestNeighbors(k,'cosine')
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Fit the training data to the nearestNeighbor object:

neigh.fit(ratings_train)

Calculate the top five similar users for each user and their similarity values, that is the
distance values between each pair of users:

top_k_distances,top_k_users = neigh.kneighbors(ratings_train,
return_distance=True)

We can observe below that the resultant top_k_distances ndarray contains similarity
values and top five similar users for each users in the training set:

top_k_distances.shape
(631, 5)
top_k_users.shape
(631, 5)

Let's see the top five users that are similar to user 1 in the training set:

top_k_users[0]
array([  0,  82, 511, 184, 207], dtype=int64)

The next step would be to choose only the top five users for each user and use their rating
information while predicting the ratings using the weighted sum of all of the ratings of
these top five similar users.

Run the following code to predict the unknown ratings in the training data:

user_pred_k = np.zeros(ratings_train.shape)
for i in range(ratings_train.shape[0]):
    user_pred_k[i,:] =
top_k_distances[i].T.dot(ratings_train[top_k_users][i])
/np.array([np.abs(top_k_distances[i].T).sum(axis=0)]).T

Let's see the data predicted by the model as follows:

user_pred_k.shape
(631, 1682)

user_pred_k
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The following image displays the results for user_pred_k:

Now let's see if the model has improved or not. Run the get_mse() method defined earlier
as follows:

get_mse(user_pred_k, ratings_train)
8.9698490022546036
get_mse(user_pred_k, ratings_test)
11.528758029255446

Item-based recommendations
IBCF is very similar to UBCF but with very minor changes in how we use the rating matrix.

The first step is to calculate the similarities between movies, as follows:

Since we have to calculate the similarity between movies, we use movie count as k instead
of user count:

k = ratings_train.shape[1]
neigh = NearestNeighbors(k,'cosine')

We fit the transpose of the rating matrix to the NearestNeighbors object:

neigh.fit(ratings_train.T)
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Calculate the cosine similarity distance between each movie pair:

top_k_distances,top_k_users = neigh.kneighbors(ratings_train.T,
return_distance=True)
top_k_distances.shape
(1682, 1682)

The next step is to predict the movie ratings using the following code:

item__pred = ratings_train.dot(top_k_distances) /
np.array([np.abs(top_k_distances).sum(axis=1)])
item__pred.shape
(631, 1682)
item__pred

The following image shows the result for item_pred:

Evaluating the model
Now let's evaluate the model using the get_mse() method we have defined by passing the
prediction ratings and the training and test set as follows:

get_mse(item_pred, ratings_train)
11.130000188318895
get_mse(item_pred,ratings_test)
12.128683035513326
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The training model for k-nearest neighbors
Run the following code to calculate the distance matrix for the top 40 nearest neighbors and
then calculate the weighted sum of ratings by the top 40 users for all the movies. If we
closely observe the code, it is very similar to what we have done for UBCF. Instead of
passing ratings_train as is, we transpose the data matrix and pass to the previous code
as follows:

k = 40
neigh2 = NearestNeighbors(k,'cosine')
neigh2.fit(ratings_train.T)
top_k_distances,top_k_movies = neigh2.kneighbors(ratings_train.T,
return_distance=True)

#rating prediction - top k user based
pred = np.zeros(ratings_train.T.shape)
for i in range(ratings_train.T.shape[0]):
    pred[i,:] =
top_k_distances[i].dot(ratings_train.T[top_k_users][i])/np.array([np.abs(to
p_k_distances[i]).sum(axis=0)]).T

Evaluating the model
The follow code snippet calculates the mean squared error for the training and test set. We
can observe that the training error is 11.12 whereas the test error is 12.12.

get_mse(item_pred_k, ratings_train)
11.130000188318895
get_mse(item_pred_k,ratings_test)
12.128683035513326
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Summary
In this chapter, we have explored building collaborative filtering approaches such as user-
based and item-based approaches in R and Python, the popular data mining programming
languages. The recommendation engines are built on MovieLens, and Jester5K datasets
available online.

We have learnt about how to build the model, choose data, explore the data, create training
and test sets, and evaluate the models using metrics such as RMSE, Precision-Recall, and
ROC curves. Also, we have seen how to tune parameters for model improvements.

In the next chapter, we will be covering personalized recommendation engines such as
content-based recommendation engines and context-aware recommendation engines using
R and Python.



6
Building Personalized

Recommendation Engines
Recommendation engines have been evolving very fast, with a lot of research also going
into this field. Big multinational companies are investing huge amounts of money into this
field. As mentioned earlier, right from the earlier models of recommendation engines such
as collaborative filtering, these systems have been a huge success. With more and more
revenues being generated through recommendation engines and more and more people
using the Internet for their shopping needs, reading news, or for getting information related
to health, business organizations have seen huge business in tapping this available user
activities on the Internet. With the increase in the number of users of recommendation
engines, and with more and more applications being powered by recommendation engines,
users also started asking for personalized suggestions rather than community-based
recommendations. This requirement of the user community was taken as the new challenge,
and personalized recommendation engines have been built for providing suggestions at a
personal level.

Almost all the industry domains are currently building recommendation engines that can
recommend at personalized levels.

The following are a few personalized recommendations:

Personalized news recommendations–Google News
Personalized health-care systems
Personalized travel recommendation systems
Personalized recommendations on Amazon
Personalized movie recommendations on YouTube
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The following is the screenshot of personalized recommendations:

In the Chapter 3, Recommendation Engines Explained, we learned in detail about content-
based recommender systems and context-aware recommender systems. In this chapter, we
will recall these topics in brief and then move ahead to build content-based and context-
aware recommender systems.

Personalized recommender systems
In this chapter, we will learn about two flavours of personalized recommenders:

Content-based recommender systems
Context-aware recommender systems

Content-based recommender systems
Building collaborative filtering is relatively easy. In the fifth chapter, we learned about
building collaborative filtering recommender systems. While building those systems, we
just considered the ratings given to a product and the information about whether a product
is liked or not. With this minimal information, we built the systems. To many people's
surprise, these systems performed very well. But these systems had their own limitations,
such as the cold start problem explained in the previous chapters.
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Assume a case of a user, Nick, giving five-star rating to a movie, say Titanic. What could
have made Nick give that rating? May be the story of the film, the actors in the movie, the
background score, or the screenplay. These preferences for these features made Nick rate
the movie. Wouldn't including this internal information of preferences for the
product/features make more sense while building recommendations?

In collaborative filtering, the basic assumption is that people with similar taste in the past
will have similar taste in the future. If we closely observe, this assumption may not apply in
all cases. For example, if my neighbors have rated the thriller movie The Exorcist highly, that
movie should not be suggested to me since I have a preference for romantic movies. I
should instead get Titanic, which is of the romance genre, as a suggestion. I do not always
have the same taste as my neighbors; I would be happy if I got suggestions solely based on
my preferences and actions. Businesses have seen a lot of business opportunities in
implementing these types of recommendations, known as personalized recommender
systems, at an individual level.

Building a content-based recommendation
system
In content-based recommender systems, we use the content information of both users and
items while building recommendation engines. A typical content-based recommender
system will perform the following steps:

Generate user profiles.1.
Generate item profile.2.
Generate the recommendation engine model.3.
Suggest the top N recommendations.4.

We first generate user and item profiles from the available information. A profile typically
contains preferences for the features of items and users (refer to Chapter 3, Recommendation
Engines Explained for details). Once the profiles are created, we choose a method to build the
recommendation engine model. Many data-mining techniques such as classification, text
similarity approaches such as tf-idf similarity, and Matrix factorization models can be
applied for building content-based recommendation engines.
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We can even employ multiple recommendation engine models and build hybrid
recommendation engines to serve as content-based recommendations. A typical content
recommender is depicted in the following figure:

Content-based recommendation using R
Let's start building a personalized recommendation engine in R. We choose the MovieLens
dataset to build our system. In the previous section, we refreshed the concepts of content-
based recommender systems. There are multiple ways we can build personalized
recommenders; in this section, we will use the multiclass classification approach to build
our basic content-based recommendation engine.

Using the classification approach, we are trying to build a model-based recommendation
engine. Most recommender systems–either collaborative filtering or content-based–use
neighbourhood methods to build the recommenders. Let's explore how we can use a
supervised machine-learning approach to build the recommendation engines.
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Before we start writing the code, let's discuss the steps for building the personalized
recommender system. The following figure shows the order of steps we would be following
to achieve our objective:

The first step would always be to gather the data and pull it into the programming
environment so that we may apply further steps. For our use case, we download the
MovieLens dataset containing three sets of data, as defined next:

Ratings data containing userID, itemID, rating, timestamp
User data containing the user information, such as userID, age, gender,
occupation, ZIP code, and so on
Movie data containing a certain movie's information, such as movieID, release
date, URL, genre details, and so on
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The second step would be preparing the data required to build the classification models. In
this step, we extract the required features of the users and class labels to build the
classification model:

For our example case, we define the ratings (1 to 5) given by the users as class
labels, such as 1-3 rating as 0 and 4-5 rating as 1. Thus, we will build a two-class
classification model. Our model will predict the class label, given the input
features for a given user.

You might be wondering why we are choosing binary classification
instead of multiclass classification. The choice of model is left to the person
building the recommender system; in our case, with the dataset we have
chosen, binary class classification fits better than a multiclass classification.
Readers are encouraged to try multiclass-classification for your
understanding.

We choose user demography and item features from user data and item data to
form the features of our binary classification model. We extended the
User_item_rating data by including features such as genre information for the
movie rated by the user, user personal information such as age, gender,
occupation, and so on. The final features and class labels can be seen in the
preceding figure.

The third step will be to build the binary classification model. We will choose the
RandomForest algorithm to build the class.
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The fourth and final step will be to generate the top-N recommendations for the users. For
our example, we take a test user and predict the class labels for the movie that he has not
rated earlier and send the top-N movies, which have higher probability ratings predicted by
our classification model.

Please note that the choice of generating the top-N recommendations are left to the choice of
the users.

Let's implement the aforementioned steps using R. In this section, we will go through a
step-by-step implementation of content-based recommendation using R.

Dataset description
For this exercise, we use two MovieLens dataset files–one is a ratings file containing ratings
given to 943 to 1682 movies on a scale of 1-5, and the second is an item dataset file
containing content information, that is, information about the movie genre, movie name,
movie ID, URLs, and so on.

The MovieLens dataset can be downloaded from following URL:
h t t p ://g r o u p l e n s . o r g /d a t a s e t s /m o v i e l e n s /

Loading ratings data into R environment using read.csv() function available in R:

raw_data = read.csv("~/udata.csv",sep="\t",header=F)
Adding column names to the dataframe
colnames(raw_data) = c("UserId","MovieId","Rating","TimeStamp")

This code removes the last column from the DataFrame:

ratings = raw_data[,1:3]

See the first five lines of the data, we use head() function as follows:

head(ratings)

See the columns of the rating data frame using names() function.
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See the descriptions of the ratings function using str() function. All the results of the three
mentioned functions are shown as follows:

The following code loads item data into the R environment using the read.csv() function
available in R:

movies =
read.csv("C:/Suresh/R&D/packtPublications/reco_engines/drafts/personalRecos
/uitem.csv",sep="|",header=F)

Next, we add columns to the data frame:

colnames(movies) =
c("MovieId","MovieTitle","ReleaseDate","VideoReleaseDate","IMDbURL","Unknow
n","Action","Adventure","Animation","Children","Comedy","Crime","Documentar
y","Drama","Fantasy","FilmNoir","Horror","Musical","Mystery","Romance","Sci
Fi","Thriller","War","Western")
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Then we remove unwanted data; for this exercise we are keeping only the genre
information only:

movies = movies[,-c(2:5)]
View(movies)

The description of movies is given by str(movies).The column names can be seen using
names(movies):
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The next step is to create feature profiles of customers to build a classification model. We
should extend the rating data frame containing userID, movieID, and rating with the movie
properties, as shown next.

In the following code, we use merge() to perform a join function to merge ratings data
with item data:

ratings = merge(x = ratings, y = movies, by = "MovieId", all.x = TRUE)

View(ratings)

Let's see the columns names using names() method:

Now we create the class labels for each record of the profile we just created. We shall create
a binary class label for each of the ratings so that 1-3 ratings will be labelled as 0 and 4-5
ratings as 1. The following code does this conversion for us. We use the lapply() function
to reshape the ratings:

The following code manages the conversion of numerical ratings to binary categorical
variable:

nrat = unlist(lapply(ratings$Rating,function(x)
{
  if(x>3) {return(1)}
  else {return(0)}
}))
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Next, we combine the newly created rating categorical rating variable – nrat – with the
original rating data frame ratings using cbind():

ratings = cbind(ratings,nrat)

In the preceding figure, we can observe the new rating binary class, nrat.

Now let's observe the variables that will be going into the model building stage using the
apply() function by applying table() to each column, as shown next:

apply(ratings[,-c(1:3,23)],2,function(x)table(x))

From the preceding results, we can observe that the number of zeroes is very high when
compared to the number of 1s; so let's remove this variable from our feature list. Also, let's
remove the rating variable, as we have created a new variable nrat:

scaled_ratings = ratings[,-c(3,4)]

We shall now standardize or center the data by using the scale() function available in R
before we build the model as shown in the following code snippet. Standardizing will
adjust data in different scales to common a scale. The scale function will apply centering by
removing column means on the each of corresponding column:

scaled_ratings=scale(scaled_ratings[,-c(1,2,21)])
scaled_ratings = cbind(scaled_ratings,ratings[,c(1,2,23)])
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Now let's get into building the model using the randomForest algorithm for binary
classification. Before that, let's divide the data into training and test sets with an 80:20 split.

The following code will first create a randomize index object of all the data. Then we use
this indexes to divide the train and test sets.

set.seed(7)
which_train <- sample(x = c(TRUE, FALSE), size = nrow(scaled_ratings),
                      replace = TRUE, prob = c(0.8, 0.2))
model_data_train <- scaled_ratings[which_train, ]
model_data_test <- scaled_ratings[!which_train, ]

Now let's build the model using randomForest algorithm from the library randomForest:

In the following code snippet, we are converting the integer nrat variable
to factor format.

library(randomForest)
fit = randomForest(as.factor(nrat)~., data = model_data_train[,-c(19,20)])

We can see the details of the model build, fit, by just typing, fit:
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In the previous code snippet we have used the randomforest() method with default
values. For random forests we have two parameters which can be tuned for optimal
performance; mtry is number of samples at each tree split, ntree is number of decision trees
to be grown. Using parameter tuning and cross-validation approaches, we should choose
optimal parameters.

We can also see the summary of the model using summary(), as shown next:

Now, let's see how the model performs on the test set:

predictions <- predict(fit, model_data_test[,-c(19,20,21)], type="class")
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Let's evaluate the model using the Precision-Recall method:

#building confusion matrix
cm = table(predictions,model_data_test$nrat)
(accuracy <- sum(diag(cm)) / sum(cm))
(precision <- diag(cm) / rowSums(cm))
recall <- (diag(cm) / colSums(cm))

With the preceding results, we are quite happy with a 60% precision rate and a 75% recall
rate. Now we move ahead to generate the top-N recommendations to a user ID (943) by
performing the following steps:

Create a DataFrame containing all the movies not rated by the active user (user1.
id: 943 in our case).

        #extract distinct movieids
        totalMovieIds = unique(movies$MovieId)
        #see the sample movieids using tail() and head() functions:
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        #a function to generate dataframe which creates non-rated
          movies by active user and set rating to 0;
        nonratedmoviedf = function(userid){
          ratedmovies = raw_data[raw_data$UserId==userid,]$MovieId
          non_ratedmovies = totalMovieIds[!totalMovieIds %in%
            ratedmovies]
           df = data.frame(cbind(rep(userid),non_ratedmovies,0))
           names(df) = c("UserId","MovieId","Rating")
           return(df)
        }

        #let's extract non-rated movies for active userid 943
        activeusernonratedmoviedf = nonratedmoviedf(943)

Build a profile for this active user DataFrame:2.

        activeuserratings = merge(x = activeusernonratedmoviedf, y =
          movies, by = "MovieId", all.x = TRUE)
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Predict ratings, sort and generate 10 recommendations:3.

        #use predict() method to generate predictions for movie ratings
          by the active user profile created in the previous step.
        predictions <- predict(fit, activeuserratings[,-c(1:4)],
          type="class")
        #creating a dataframe from the results
        recommend = data.frame(movieId =
          activeuserratings$MovieId,predictions)
        #remove all the movies which the model has predicted as 0 and
          then we can use the remaining items as more probable movies
            which might be liked by the active user.
        recommend = recommend[which(recommend$predictions == 1),]

With this step, we have when extending or improving finished building the content-based
recommendation engine using a classification model. Before we move into the next section,
I would like to make a clear point that the choice of the model and class label features is up
to the reader to extend or improve the model.

As mentioned earlier, we should use cross-validation approach to choose optimal
parameters so as to improve the model accuracy.

Content-based recommendation using Python
In the previous section, we built a model-based content recommendation engine using R. In
this section, we will build content recommendations using another approach, using the
Python sklearn, NumPy, and pandas packages.

Let's recall the steps for building a content-based system discussed in the beginning of the
chapter:

Item profile generation1.
User profile generation2.
Recommendation engine model generation3.
Generation of the top-N recommendations4.
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In this section, we shall learn in detail how to build content following the aforementioned
steps using Python:

The design of the approach is shown in the following figure:

Item profile creation: In this step, we create a profile for each item using the
content information we have about the items. The item profile is usually created
using a widely-used information retrieval technique called tf-idf. In Chapter 4,
Data Mining Techniques for Recommendation Engines, we explained tf-idf in detail.
To recap, the tf-idf value gives the relative importance of features with respect to
all the items or documents.
User profile creation: In this step, we take the user activity dataset and
preprocess the data into a proper format to create a user profile. We should
remember that, in a content-based recommender system, the user profile is
created with respect to the item content, that is, we have to extract or compute the
preferences of the user for the item content or item features. Usually, a dot
product between user activity and item profile gives us the user profile.
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Recommendation engine model generation: Now that we have the user profile
and item profile in hand, we will proceed to build a recommendation model.
Computing a cosine similarity between the user profile and item profile gives us
the affinity of the user to each of the items.
Generation of the top-N recommendations: In the final step, we shall sort the
user-item preferences based on the values calculated in the previous step and
then suggest the top-N recommendations.

Now we will proceed toward the implementation of the aforementioned steps in Python.

Dataset description
In this section, we will use the Anonymous Microsoft Web Dataset to build a content-based
recommendation system. The objective of this section is to recommend websites to an active
user, based on his previous web browsing history.

MS Web Dataset refers to the web logs of the website www.microsoft.com accessed by
38,000 anonymous users. For each of the users, the dataset consists of lists about data of all
the websites visited by the users in a time frame of one week.

The dataset can be downloaded from the following URL:

https://archive.ics.uci.edu/ml/datasets/Anonymous+Microsoft+Web+Data

For the sake of simplicity, from now on, we will refer to the website areas with the term
items. There are 5,000 users, and they are represented by sequential numbers between 10,001
and 15,000. Items are represented by numbers between 1,000 and 1,297, even if they are less
than 298.

The dataset is an unstructured text file. Each record contains several fields between two and
six. The first field is a letter defining what the record contains. There are three main types of
records, which are as follows:

Attribute (A): This is the description of the website area
Case (C): This is the case for each user, containing its ID
Vote (V): This is the vote lines for the case

The first column case record is followed by the userID/caseID. The third column contains
the user ID/vote given to the website area. The fourth column contains the description of
the website area, and the fifth column consists of the URL of the website area.

http://www.microsoft.com
https://archive.ics.uci.edu/ml/datasets/Anonymous+Microsoft+Web+Data
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The following image shows a small set of original data:

Our target is to suggest that each user explores some areas of the website that they haven't
explored yet.

The following is the list of packages we will be using for this exercise:

import pandas as pd
import numpy as np
import scipy
import sklearn

Loading the data:

path = "~/anonymous-msweb.test.txt"
import pandas as pd
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Use read.csv() function available in pandas package to read the data:

raw_data = pd.read_csv(path,header=None,skiprows=7)
raw_data.head()

Let's see more sample data to have a much clearer idea:
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We can observe the following from the preceding figure:

The first column contains three types of values: A/V/C, where A represents case
ID, V represents the user, and C represents the case IDs that the user has accessed
The second column contains IDs to represent users and items
The third column contains the description of website area
The fourth contains the URL for the website area on the website

To make an item profile, we use the rows containing A in the first column, and to create a
user activity or dataset, we use the rows which don't contain A in the first column.

Let's get started with profile generation.

Before we proceed toward profile generation, we will have to format the user activity data;
the following section explains how to create a user activity dataset.

User activity
In this section, we will create a user-item rating matrix containing users as rows, items as
columns, and the value as the cells. Here, the value is either 0 or 1, indicating 1 if the user
has accessed the web page, else 0:

First we filter only records that don't contain "A" in the first column:

user_activity = raw_data.loc[raw_data[0] != "A"]

Next, we assign then we remove unwanted columns from the dataset:

user_activity = user_activity.loc[:, :1]

Assigning names to the columns of user_activity DataFrame:

user_activity.columns = ['category','value']
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The following code shows the sample user_activity data:

To get the total unique webid in the dataset, see as the following code:

len(user_activity.loc[user_activity['category'] =="V"].value.unique())
Out[73]: 236

To get the unique users count, see following code:

len(user_activity.loc[user_activity['category'] =="C"].value.unique())
Out[74]: 5000

Now let's run the following code to create a user-item-rating matrix, as follows:

First, we assign variables:

tmp = 0
nextrow = False

Then we get the last index of the dataset:

lastindex = user_activity.index[len(user_activity)-1]
lastindex
Out[77]: 20484
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The for loop code loops through each record and adds new columns('userid', 'webid')
to user_activity data frame which shows userid and corresponding web activity:

for index,row in user_activity.iterrows():
    if(index <= lastindex ):
        if(user_activity.loc[index,'category'] == "C"):
            tmp = 0
            userid = user_activity.loc[index,'value']
            user_activity.loc[index,'userid'] = userid
            user_activity.loc[index,'webid'] = userid
            tmp = userid
            nextrow = True
        elif(user_activity.loc[index,'category'] != "C" and nextrow ==
True):
                webid = user_activity.loc[index,'value']
                user_activity.loc[index,'webid'] = webid
                user_activity.loc[index,'userid'] = tmp
                if(index != lastindex and
user_activity.loc[index+1,'category'] == "C"):
                    nextrow = False
                    caseid = 0
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Next, we remove the unwanted rows from the preceding data frame, that is, we will be
removing the rows containing "C" in the category column:

user_activity = user_activity[user_activity['category'] == "V" ]

We subset the columns, and remove the first two columns, which we no longer needed:

user_activity = user_activity[['userid','webid']]

Next, we sort the data by webid; this is to make sure that the rating matrix generation is in
good format:

user_activity_sort = user_activity.sort('webid', ascending=True)

Now, let's create a dense binary rating matrix containing user_item_rating using the
following code:

First, we get the size of webid column:

sLength = len(user_activity_sort['webid'])

Then we add a new column, 'rating' to the user_activity data frame which contains
only 1:

user_activity_sort['rating'] = pd.Series(np.ones((sLength,)),
index=user_activity.index)

Next, we use pivot to create binary rating matrix:

ratmat = user_activity_sort.pivot(index='userid', columns='webid',
values='rating').fillna(0)

Finally, we create a dense matrix:

ratmat = ratmat.to_dense().as_matrix()
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Item profile generation
In this section, we will be creating an item profile from the initial raw data (raw_data). To
create item data, we will consider the data that contains A in the first column:

First, we filter all the records containing first column as "A"

items = raw_data.loc[raw_data[0] == "A"]

Then we name the columns as follows:

items.columns = ['record','webid','vote','desc','url']

To generate item profile we only needed two columns so we slice the dataframe as follows:

items = items[['webid','desc']]

To see the dimensions of the items, the dataframe is given like:

items.shape
Out[12]: (294, 2)

We observe that there are 294 unique webid in the dataset:

To check the sample of the data, we use the following code:

Items.head()
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To check the count of unique webid, we use the following code:

items['webid'].unique().shape[0]
Out[117]: 294

We can also only those webid which are present in the user_activity data:

items2 = items[items['webid'].isin(user_activity['webid'].tolist())]

We can use the following code check type of the object

type(items2)
Out[123]: pandas.core.frame.DataFrame

We can also sort the data by webid:

items_sort = items2.sort('webid', ascending=True)

Let'see what we have done till now, using the head(5) function:

Now, we shall create the item profile using the tf-idf functions available in the sklearn
package. To generate tf-idf, we use the TfidfVectorizer(). The fit_transform()
methods are in the sklearn package. The following code shows how we can create tf-
idf.
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In the following code, the choice of the number of features to be included depends on the
dataset, and the optimal number of features can be selected by the cross-validation
approach:

from sklearn.feature_extraction.text import TfidfVectorizer
v = TfidfVectorizer(stop_words ="english",max_features = 100,ngram_range=
(0,3),sublinear_tf =True)
x = v.fit_transform(items_sort['desc'])
itemprof = x.todense()

User profile creation
We now have item profile and user activity in hand; the dot product between these two
matrices will create a new matrix with dimensions equal to # of users by # Item features.

To compute the dot product between user activity and item profile, we use the scipy
package methods such as linalg, dot available.
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Run the following code to compute the dot product:

#user profile creation
from scipy import linalg, dot
userprof = dot(ratmat,itemprof)/linalg.norm(ratmat)/linalg.norm(itemprof)

userprof

The final step in a recommendation engine model would be to compute the active user
preferences for the items. For this, we do a cosine similarity between user profile and item
profile.

To compute the cosine calculations, we will be using the sklearn package. The following
code will calculate the cosine_similarity:

We calculate the cosine similarity between userprofile an item profile:

import sklearn.metrics
similarityCalc = sklearn.metrics.pairwise.cosine_similarity(userprof,
itemprof, dense_output=True)
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We can see the results of the preceding calculation as follows:

Now, let's format the preceding results calculated as binary data (0,1), as follows:

First, we convert the rating to binary format:

final_pred= np.where(similarityCalc>0.6, 1, 0)

 



Building Personalized Recommendation Engines

[ 198 ]

Then we examine the final predictions of first three users:
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Removing the zero values from the preceding results gives us the list of the probable items
that can be recommended to the users:

For user 213 the recommended items are generated as follows:

indexes_of_user = np.where(final_pred[213] == 1)

In the preceding code, we are generating recommendations for the active user 213:

Context-aware recommender systems
The next type of personalized recommender system that we will be learning here is context-
aware recommender system. These recommender systems are next generation
recommendations systems, which fall into the hyper-personalization category. It's natural
that there won't be an end to the needs of humans. The more we get, the more we want.
Though content-based recommender systems are efficient, targeted at an individual level,
and consider the user's personal preferences alone while building recommendation engines,
people wanted recommendation engines to be more personalized. For example, a person
going on a trip alone may need a book to read whereas the same person may need beer if he
is travelling with friends. Similarly, the same person might require diapers, medicines,
snacks, and so on if he is going with his own family. People at different places at different
times with different company have different needs. Our recommender systems should be
robust enough to handle such scenarios. Such hyper personalized recommender systems,
which cater to different recommendations to the same person based on his current context,
are known as context-aware recommender systems.
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Building a context-aware recommender systems
Building a context-aware recommender system is more like extending a content
recommender system. Building a context-aware system typically involves adding the
context dimension on top of content recommenders, as shown in the following figure:

In the preceding figure, we can observe that context dimension is added on top of a content-
based recommendation engine model, and then recommendations are generated. As we
discussed in Chapter 3, Recommendation Engines Explained, there are two popular types of
approaches for building context-aware recommendations:

Pre-filtering approaches
Post-filtering approaches

In this section, we will use post-filtering techniques to build context-aware recommender
systems.
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Context-aware recommendations using R
In the previous section, we built a content-based recommendation engine. In this section,
we will extend the previous model to include context information and generate a context-
aware recommendation engine.

The usual practice of building context-aware systems is to add a time dimension to the
content-based recommendations.

The workflow is shown as follows:
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Let's try building context aware systems using R. The steps for building context-aware
systems in R are as follows:

Define context.1.
Create a context profile with respect to a user for item content.2.
Generate recommendations for a context.3.

Defining the context
The first step is to define the context that we will be including in our recommendations. In
the previous section, we used the MovieLens dataset to build content-based
recommendation engines. In the dataset, we have a time component, timestamp, in the
rating data. We shall use this variable for our context-aware recommendation systems.

We will extend the R code we used while building content-based recommendations.

We load the full MovieLens ratings dataset as follows:

raw_data =
read.csv("C:/Suresh/R&D/packtPublications/reco_engines/drafts/personalRecos
/udata.csv",sep="\t",header=F)
colnames(raw_data) = c("UserId","MovieId","Rating","TimeStamp")

See the sample data using head() function:

We load movies dataset:

movies =
read.csv("C:/Suresh/R&D/packtPublications/reco_engines/drafts/personalRecos
/uitem.csv",sep="|",header=F)
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Then we add column names to the movies data frame:

colnames(movies) =
c("MovieId","MovieTitle","ReleaseDate","VideoReleaseDate","IMDbURL","Unknow
n","Action","Adventure","Animation","Children","Comedy","Crime","Documentar
y","Drama","Fantasy","FilmNoir","Horror","Musical","Mystery","Romance","Sci
Fi","Thriller","War","Western")

Next, we remove unwanted columns from the data frame:

movies = movies[,-c(2:5)]

We merge the Movies and Ratings datasets using merge() function

ratings_ctx = merge(x = raw_data, y = movies, by = "MovieId", all.x = TRUE)

The context that we want to introduce to our previous content-based recommendation is the
hour of the day, that is, our recommendations will be made as per the time of the day. The
set of recommendations for an active user will be different for each hour of the day.
Usually, these changes in recommendations are due to the ordering of the
recommendations as per the hour. We will see next how we achieve this.

Creating context profile
In the following section, we shall write code to create context profile of the user. We chose
the timestamp information available in the dataset and calculate the preference value for
movie genres for each user for each hour of the day. This context profile information is used
for generating context aware recommendations.
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We extract timestamp from the ratings dataset:

ts = ratings_ctx$TimeStamp

Then, we convert it into a POSIXlt date object and using hour property to extract hour of
the day:

hours <- as.POSIXlt(ts,origin="1960-10-01")$hour

See below for sample data:

We can append the hours back on to the ratings dataset:

ratings_ctx = data.frame(cbind(ratings_ctx,hours))

Now, let's start building a context profile for a user with the user ID 943:

Extract ratings information for the active user(943) and removing UserId, MovieId, Rating,
Timestamp columns, as shown as follow:

UCP = ratings_ctx[(ratings_ctx$UserId == 943),][,-c(2,3,4,5)]
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As a next step, we compute the columns of all the item features. This columnwise sum is
used to compute the preferences for the item features for each hour of the day.

We compute the column wide sum of each column using aggregate() function:

UCP_pref = aggregate(.~hours,UCP[,-1],sum)

From the preceding figure, we can see the time preferences for each of the movie genres for
the active user 943. We can observe that during the ninth hour of the day, the user watches
more movies, especially action/drama/comedy movies:

We can normalize the preceding data between 0-1 using following function:

UCP_pref_sc = cbind(context = UCP_pref[,1],t(apply(UCP_pref[,-1], 1,
function(x)(x-min(x))/(max(x)-min(x)))))

Generating context-aware recommendations
Now that we have created the context profile for the active user, let's start generating
context-aware recommendations for the user.

For this, we shall reuse the recommend object built using R, which contains content
recommendations for all the users.
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Let's see the recommendations made to the user 943 using the content-based system:

recommend$MovieId

Now, to these content recommendations, we add our time or hour of the day dimension
and then generate recommendations as per the current context.

We merge recommendations and movies dataset using merge() function:

UCP_pref_content = merge(x = recommend, y = movies, by = "MovieId", all.x =
TRUE)

With the preceding step, we have computed all the required matrices, user context profile
(UCP_Pref_SC) and user content recommendations (UCP_Pref_content).

Suppose we want to generate recommendations for the user at the ninth hour; we just need
to perform an element wise multiplication of user content recommendations and the context
row for the ninth hour of the day from the UCP_pref_SC object. This is given as follows:

Performing element wise multiplication for the User content recommendations and the
ninth hour context preferences for the user:

active_user =cbind(UCP_pref_content$MovieId,(as.matrix(UCP_pref_content[,-
c(1,2,3)]) %*% as.matrix(UCP_pref_sc[4,2:19])))
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The results can be seen as follows; we can observe that the preference for MovieId 3 is 0.5
where as for MovieId 4 the preference is 2.8

We can create a dataframe object of the prediction object:

active_user_df = as.data.frame(active_user)

Next, we add column names to the predictions object:

names(active_user_df) = c('MovieId','SimVal')

Then we sort the results:

FinalPredicitons_943 = active_user_df[order(-active_user_df$SimVal),]

Summary
In this chapter, we learned how to build content-based recommendation engines and
context-aware recommendation engines using R and Python. We modelled content-based
recommendation engines in two types–the classification model and the tf-idf model
approaches using R and Python. To build context-aware recommendations, we simply did
an element wise multiplication between content-based recommendations and context
profile of the user.

In the next chapter, we will be exploring Apache Spark, to build scalable, real-time
recommendation engines.



7
Building Real-Time

Recommendation Engines with
Spark

In this day and age, the need to build scalable real-time recommendations is increasing day
by day. With more internet users using e-commerce sites for their purchases, these e-
commerce sites have realized the potential of understanding the patterns of the users'
purchase behavior to improve their business, and to serve their customers on a very
personalized level. To build a system which caters to a huge user base and generates
recommendations in real time, we need a modern, fast scalable system. Apache Spark,
which is a special framework designed for distributed in-memory data processing, comes to
our rescue. Spark applies a set of transformations and actions to distributed data to build
real-time data mining applications.

In the previous chapters, we learned about implementing similarity-based collaborative
filtering approaches, such as user-based collaborative filtering and content-based
collaborative filtering. Though the similarity-based approaches are a huge success in
commercial applications, there came into existence model-based recommender models,
such as matrix factorization models, which have improved the performance of
recommendation engine models. In this chapter, we will learn about the model-based
approach of collaborative filtering, moving away from the heuristic-based similarity
approaches. Also, we will focus on implementing the model-based collaborative filtering
approach using Spark.
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In this chapter, we will learn about the following:

What is in Spark 2.0
Setting up the pyspark environment
Basic Spark concepts
The MLlib recommendation engine module
The Alternating Least Squares algorithm
Data exploration of the Movielens-100k dataset
Building model-based recommendation engines using ALS
Evaluating the recommendation engine model
Parameter tuning

About Spark 2.0
Apache Spark is a fast, powerful, easy-to-use, distributed, in-memory, and open source
cluster computing framework built to perform advanced analytics. It was originally
developed at UC Berkeley in 2009. Spark has been widely adopted by enterprises across a
wide range of industries since its inception.

One of the main advantages of Spark is that it takes all the complexities away from us, such
as resources scheduling, job submissions, executions, tracking, between-node
communication, fault tolerance, and all low-level operations that are inherent features of
parallel processing. The Spark framework helps us write programs to run on the clusters in
parallel.

Spark can be run both as a standalone mode and as a cluster mode. Spark can be easily
integrated with Hadoop platforms.

As a general-purpose computing engine, Spark with its in-memory data processing
capability and easy-to-use APIs allows us to efficiently work on a wide range of large-scale
data processing tasks, such as streaming applications, machine learning, or interactive SQL
queries over large datasets that require iterative access.

Spark can be easily integrated with many applications, data sources, storage platforms, and
environments, and exposes high-level APIs in Java, Python, and R to work with. Spark has
proved to be broadly useful for a wide range of large-scale data processing tasks, over and
above machine learning and iterative analytics.
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Credits: Databricks

Spark architecture
The Apache Spark ecosystem contains many components to work with distributed, in-
memory, and machine-learning data processing tools. The main components of Spark are
discussed in the following sub-sections. Spark works on a master-slave architecture; a high-
level architecture is shown in the following diagram:

Credits: Databricks
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The Spark cluster works on the master-slave architecture. The Spark Core execution engine
accepts requests from clients and passes them to the master node. The driver program in the
master communicates with the worker node executors to get the work done as shown in the
following diagram:

Spark driver program: The driver program acts as a master node in a Spark cluster, which
hosts the SparkContext for Spark applications. It receives the client request and co-ordinates
with the cluster manager which manages the worker nodes. The driver program splits the
original request into tasks and schedules them to run on executors in worker nodes. All the
processes in Spark are Java processes. The SparkContext creates Resilient Distributed
Datasets (RDD), an immutable, distributable collection of datasets partitioned across nodes,
and performs a series of transformations and actions to compute the final output. We will
learn more about RDDs in the latter sections.

Worker nodes: A worker contains executors, where the actual task execution happens in the
form of Java processes. Each worker runs its own Spark instance and is the main compute
node in Spark. When a SparkContext is created, each worker node starts its own executors
to receive the tasks.

Executors: These are the main task executioners of Spark applications.
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Spark components
In this section, we will see the core components of the Spark ecosystem. The following
diagram shows the Apache Spark Ecosystem:

Credits:Databricks

Spark Core
Spark Core is the core part of the Spark platform: the execution engine. All other
functionalities are built on top of Spark Core. This provides all the capabilities of Spark,
such as in-memory distributed computation, and fast, easy-to-use APIs.

Structured data with Spark SQL
Spark SQL is a component on top of Spark Core. It is a spark module that provides support
for structured and semi-structured data.

Spark SQL provides a unified approach, to allow users to query the data objects in an
interactive SQL type, such as applying select, where you can group data objects by the kind
of operations through data abstraction APIs, such as DataFrames.
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A considerable amount of time will be dedicated to data exploration, exploratory analysis,
and SQL-like interactions. Spark SQL, which provides DataFrames, also acts as a
distributed SQL query engine; for instance, in R, the DataFrames in Spark 2.0, the data is
stored as rows and columns, access to which is allowed as an SQL table with all the
structural information, such as data types.

Streaming analytics with Spark Streaming
Spark Streaming is another Spark module that enables users to process and analyze both
batch and streaming data in real time, to perform interactive and analytical applications.
Spark Streaming provides Discretized Stream (DStream), a high-level abstraction, to
represent a continuous stream of data.

The main features of Spark Streaming API are as follows:

Scalable
High throughput
Fault-tolerant
Processes live stream of incoming data
Can connect to real-time data sources and process real-time incoming data on the
go
Can apply complex machine learning and graph processing algorithms on
streaming data

Machine learning with MLlib
MLlib is another module in Spark, built on top of Spark Core. This machine learning library
is developed with an objective to make practical machine learning scalable and easy to use.
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This library provides tools for data scientists, such as the following:

Machine learning algorithms for regression, classification, clustering, and
recommendation engines
Feature extraction, feature transformation, dimensionality reduction, and feature
selection
Pipeline tools for streamlining machine learning processes for construction,
evaluation, and tuning the over process of solving a machine learning problem
Persistence of storing and loading machine learning models and pipelines
Utilities, such as linear algebra and statistical tasks

When starting Spark 2.0, the old MLlib model is replaced with ML library, which is built
with DataFrames APIs, providing more optimizations and making uniform APIs across all
languages.

Graph computation with GraphX
GraphX is a new Spark API for building graph-based systems. It is a graph-parallel
processing computation engine and distributed framework, which is built on top of Spark
Core. This project was started with the objective of unifying the graph-parallel and data
distribution framework into a single Spark API. GraphX enables users to process data both
as RDDs and graphs.

GraphX provides many features, such as the following:

Property graphs
Graph-based algorithms, such as PageRank, connected components, and Graph
Builders, which are used to build graphs
Basic graph computational components, such as subgraph, joinVertices,
aggregateMessages, Pregel API, and so on

Though graph models are not within the scope of this book, we will learn some
fundamentals of graph applications in Chapter 8, Building Real-Time Recommendations with
Neo4j.
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Benefits of Spark
The main advantages of Spark are, it is fast, has in-memory framework, contains several
APIs, making it very easy to use, its Unified Engine for large quantities of data, and its
machine learning components. Unlike Map-Reduce model with its batch mode, which is
slower and contains lot of programming, Spark is faster, with real-time and easy to code
framework.

The following diagram shows the above mentioned benefits:

Setting up Spark
Spark runs on both Windows and UNIX-like systems (for example, Linux, Mac OS). It's
easy to run locally on one machine; all you need is to have Java installed on your system
PATH or the JAVA_HOME environment variable pointing to a Java installation.

Spark runs on Java 7+, Python 2.6+/3.4+ and R 3.1+. For the Scala API, Spark 2.0.0 uses Scala
2.11. You will need to use a compatible Scala version (2.11.x).

Get Spark from the downloads page of the project website:

http://d3kbcqa49mib13.cloudfront.net/spark-2.0.0-bin-hadoop2.7.tgz

Spark needs to be built against a specific version of Hadoop in order to access Hadoop
Distributed File System (HDFS), as well as standard and custom Hadoop input sources.

Spark requires the Scala programming language (version 2.10.4 at the time of writing this
book) in order to run. Fortunately, the prebuilt binary package comes with the Scala
runtime packages included, so you don't need to install Scala separately in order to get
started. However, you will need to have a Java Runtime Environment (JRE) or Java
Development Kit (JDK) installed (take a look at the software and hardware list in this
book's code bundle for installation instructions).

http://d3kbcqa49mib13.cloudfront.net/spark-2.0.0-bin-hadoop2.7.tgz
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Once you have downloaded the Spark binary package, unpack the contents of the package
and change it into the newly created directory by running the following commands:

tar xfvz spark-2.0.0-bin-hadoop2.7.tgz
cd spark-2.0.0-bin-hadoop2.7

Spark places user scripts to run Spark in the bin directory. You can test whether everything
is working correctly by running one of the example programs included in Spark:

------------------
./bin/run-example org.apache.spark.examples.SparkPi
16/09/26 15:20:36 INFO DAGScheduler: Job 0 finished: reduce at
SparkPi.scala:38, took 0.845103 s
Pi is roughly 3.141071141071141
--------------------

You can run Spark interactively with Scala using the following command:

./bin/spark-shell --master local[2]

The --master option specifies the master URL for a distributed cluster, or you can use
local to run locally with one thread or local[N] to run locally with N threads. You
should start by using local for testing. For a full list of options, run the Spark shell with
the --help option.

Source:
h t t p ://s p a r k . a p a c h e . o r g /d o c s /l a t e s t /

About SparkSession
From Spark 2.0, the SparkSession will be the entry point for Spark applications. The
SparkSession serves as the main interactive access point for underlying Spark
functionalities and Spark programming capabilities, such as DataFrames API and Dataset
API. We use SparkSession to create DataFrame objects.

In the earlier versions of Spark, we used to create SparkConf, SparkContext, or
SQLContext to interact with Spark, but since Spark 2.0, this has been taken care of by
SparkSession by encapsulating SparkConf, SparkContext automatically.

When you start Spark in the shell command, SparkSession is created automatically as
spark
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We can programmatically create SparkSession, as follows:

spark = SparkSession\
    .builder\
    .appName("recommendationEngine")\
     config("spark.some.config.option", "some-value")\
    .getOrCreate()

Resilient Distributed Datasets (RDD)
The core of Spark is Resilient Distributed Datasets, in short, RDD. RDD is an immutable
distributed collection of objects of some datatype of your data, partitioned across nodes on
your cluster. This RDD is fault-tolerant, that is, a property of the system that is able to
operate continuously, even in the event of failure by reconstructing the failed partition.

In short, we can say that RDD is a distributed dataset abstraction, which allows iterative
operations on very large-scale cluster systems in a fault-tolerant way.

RDDs can be created in a number of ways, such as parallelizing an existing collection of
data objects, or referencing an external file system, such as HDFS:

Creating RDD from an existing data object:

coll = List("a", "b", "c", "d", "e")

rdd_from_coll = sc.parallelize(coll)

Creating RDD from a referenced file:

rdd_from_Text_File = sc.textFile("testdata.txt")

RDD supports two types of operations:

Transformations: This operation creates new RDDs from existing RDDs, which
are immutable
Actions: This operation returns values after performing computation on the
dataset

These RDD transformations are executed lazily only when the final results are required. We
can recreate or recompute the RDDs any number of times, or we can persist them by
caching them in memory if we know we may need them in the future.
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About ML Pipelines
The ML Pipelines API in Spark 2.0 is the way to use a standard workflow when solving
machine learning problems. Every machine learning problem will undergo a sequence of
steps, such as the following:

Loading data.1.
Feature extraction.2.
Model training.3.
Evaluation.4.
Predictions.5.
Model tuning.6.

If we closely observe the aforementioned steps, we can see the following:

The ML process follows a series of steps as if it is a workflow.
Often, we require more than one algorithm while solving a machine learning
problem; for example, a text classification problem might require a feature
extraction algorithm for feature extraction.
Generating predictions on test data may require many data transformations or
data-preprocessing steps, which are used during model training. For example, in
text classification problems, making predictions on test data involves data pre-
processing steps, such as tokenization and feature extraction, before applying
them to a generated classification model, which was used during model creation
on training data.

The preceding steps form one of the main motivating factors behind introducing the ML
Pipeline API. The ML Pipeline module allows users to define a sequence of stages, so that
it's easy to use. The API framework allows the ML process to scale on a distributed platform
and accommodate very large datasets, reuse some components, and so on.

The components of the ML Pipeline module are as follows:

DataFrame: As mentioned earlier, DataFrame is a way of representing the data in
the Spark framework.
Transformers: Transformers take input DataFrames and transform data into new
DataFrames. Transformation classes contain the transform() method to do the
transformations.
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Estimators: Estimators compute the final results. An Estimator class makes use of
the fit() method to compute results.
Pipeline: This is a set of Transformers and Estimators stacked as a workflow.
Parameters: This refers to the set of parameters that may be used by both
Transformers and Estimators.

We'll illustrate this for the simple text document workflow. The following figure is for the
training time usage of a pipeline:

Find below the explanation for the steps shown in the preceding figure. The blue boxes are
Transformers and the red box is the Estimator.

The Tokenizer Transformer takes the text column of a DataFrame as input and1.
returns a new DataFrame column containing tokens.
The HashingTF Transformer takes in the tokens DataFrame from the previous2.
step as input and creates new DataFrame features as output.
Now the LogisticRegression Estimator takes in the features DataFrame, fits a3.
logistic regression model, and creates a PipelineModel transformer.

First we build a pipeline, which is an Estimator, then on this Pipeline we apply fit()
method which produces a PipelineModel, a Transformer, that can be used on test data or at
prediction time.

Source:
h t t p ://s p a r k . a p a c h e . o r g /d o c s /l a t e s t /m l - g u i d e . h t m l
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The following figure illustrates this usage:

In the preceding figure, when we want to make predictions on the test data, we observe that
first the test data has to pass through a series of data-preprocessing steps, which are very
much identical to the aforementioned training step. After the pre-processing step is
completed, the features of the test data are applied to the logistic regression model.

In order to make the data-preprocessing and feature extraction steps identical, we will pass
the test data to the PipelineModel (logistic regression model) by calling the transform() to
generate the predictions.

Collaborative filtering using Alternating
Least Square
In this section, let's explain the Matrix Factorization Model (MF) and the Alternating Least
Squares method. Before we get to know about the Matrix Factorization Model, we'll define
the objective once again. Imagine we have ratings given to items by a number of users. Let's
define the ratings given by users on items in a matrix form given by R, as shown in the
following diagram:
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In the preceding diagram, we observe that user Ted has rated items B and D as 4 and 3
respectively. In a collaborative filtering approach, the first step before generating
recommendations is to fill the empty spaces, that is, to predict the non-rated items. Once the
non-rated item ratings are filled, we suggest new items to the users by ranking the newly
filled items.

In the previous chapters, we have seen neighbouring methods using Euclidean distances
and cosine distances to predict the missing values. In this section, we will adopt a new
method to fill the missing non-rated items. This approach is called the matrix factorization
method. This is a mathematical approach, which uses matrix decomposition methods. This
method is explained as follows:

A matrix can be decomposed into two low rank matrices, which, when multiplied back, will
result in a single matrix approximately equal to the original matrix.

Let's say a rating matrix R of size U X M can be decomposed into two low rank matrices
P and Q of size U X K and M X K respectively, where K is called the rank of the matrix.

In the following example, let's say the original matrix of size 4 X 4 is decomposed into two
matrices: P (4 X 2) and Q (4 X 2). Multiplying back P and Q will give us the original matrix
of size 4 X 4 and values approximately equal to those of the original matrix:

The principle of matrix factorization is used in recommendation engines, to fill the non-
rated items. The assumption in applying the aforementioned principle to recommendation
engines is that the ratings given by users on items are based on some latent features. These
latent features are applicable to both users and items, that is, a user rates an item because of
some of his personal preferences for it. Also, the user rates items because of certain features
of the items.
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Using this assumption, when the matrix factorization method is applied to the ratings
matrix, we decompose the original ratings matrix into two matrices follows as user-latent
factor matrix, P, and item-latent factor matrix:

Now, let's come back to the machine learning approach; you must be wondering what the
learning in this approach is. Observe the following formula:

We have learnt that when we multiply back the two latent factor matrices, we get the
approximate original matrix. Now, in order to improve the accuracy of the model, that is, to
learn the optimal factor vectors, P and Q, we define an optimization function, shown in the
preceding formula, which minimizes the regularized squared error between the original
ratings matrix and the resultant after the product of the latent matrices. The latter part of
the preceding equation is the regularization imposed to avoid over-fitting.

Alternating Least Squares is the optimization technique to minimize the aforementioned
loss function. In general, we use stochastic gradient descent to optimize the loss function.
For the Spark recommendation module, the ALS technique has been used for minimizing
the loss function.

In the ALS method, we calculate the optimal latent factor vectors alternatively by fixing one
of the two factor vectors, that is, we calculate the user latent vector by fixing the item-latent
feature vector as constant and vice versa.
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The main benefits of the ALS approach are as follows:

This approach can be easily parallelized
In most cases, we deal with sparse datasets in recommendation engine problems,
and ALS is more efficient in handling sparsity compared to the stochastic
gradient descent

The Spark implementation of the recommendation engine module in spark.ml has the
following parameters:

numBlocks: This is the number of blocks the users and items will be partitioned
into in order to parallelize computation (defaults to 10)
rank: This refers to the number of latent factors in the model (defaults to 10)
maxIter: This is the maximum number of iterations to run (defaults to 10)
regParam: This parameter specifies the regularization parameter in ALS (defaults
to 0.1)
implicitPrefs: This parameter specifies whether to use the explicit feedback ALS
variant or the one adapted for implicit feedback data (defaults to false, which
means it's using explicit feedback)
alpha: This is a parameter applicable to the implicit feedback variant of ALS,
which governs the baseline confidence in preference observations (defaults to 1.0)
nonnegative: This parameter specifies whether or not to use non-negative
constraints for least squares (defaults to false)

Model based recommender system using
pyspark
Software details for the use case are as follows:

Spark 2.0
Python API: pyspark
Centos 6
Python 3.4

Start the Spark session using pyspark, as follows:

pyspark
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The following screenshot shows the Spark session created by running the above pyspark
command:

To build the recommendation engine using Spark, we make use of Spark 2.0 capabilities,
such as DataFrames, RDD, Pipelines, and Transforms available in Spark MLlib, which has
was explained earlier.

Unlike earlier heurist approaches, such as k-nearest neighboring approaches used for
building recommendation engines, in Spark, matrix factorization methods are used for
building recommendation engines and the Alternating Least Squares (ALS) method is used
for generating model-based collaborative filtering.
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MLlib recommendation engine module
In this section, let's learn about the different methods present in the MLlib recommendation
engine module. The current recommendation engine module helps us build the model-
based collaborative filtering approach using the Alternating Least Squares matrix
factorization model to generate recommendations.

The main methods available for building collaborative filtering are as follows:

ALS(): The ALS() constructor is invoked and its instance is created with all the
required parameters, such as user column name, item column name, rating
column name, rank, regularization parameter (regParam), maximum iterations
(maxIter), and so on supplied.
fit(): The fit() method is used to generate the model. This method takes the
following parameters:

dataset: input dataset of type pyspark.sql.DataFrame(h t t p
://s p a r k . a p a c h e . o r g /d o c s /l a t e s t /a p i /p y t h o n /p y s p a r k . s q l . h

t m l #p y s p a r k . s q l . D a t a F r a m e )
params: this is an optional param map which contains required
parameters listed above.
Returns: The fit() method returns fitted models.

Transform(): The transform() method is used to generate the predictions.
The transform() method takes in the following:

Test data (DataFrame datatype)
Optional additional parameters that embed previously defined
parameters.
Returns a predictions (DataFrame object)

The recommendation engine approach
Now let's get into the actual implementation of the recommendation engine. We use the
following approach to build the recommendation engine using Spark:

Start the Spark environment.1.
Load the data.2.
Explore the data source.3.
Use the MLlib recommendation engine module to generate the recommendations4.
using ALS instance.
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Generate the recommendations.5.
Evaluate the model.6.
Using the cross_validation approach, apply the parameter tuning model to tune7.
the parameter and select the best model, and then generate recommendations.

Implementation
Like any other recommendation engine, the first step is to load the data into the analytics
environment (into the Spark environment in our case). When we start the Spark
environment in the 2.0 version, SparkContext and SparkSession will be created at the load
time.

Before we get into the implementation part, let's review the data for a while. In this chapter,
we use the MovieLens 100K Dataset to build collaborative filtering recommendation
engines, both user-based and item-based. The dataset contains 943 user ratings on 1,682
movies. The ratings are on a scale of 1-5.

As a first step, we shall make use of SparkContext (sc) to load the data into the Spark
environment.

Data loading
To load the data, run the below command:

data = sc.textFile("~/ml-100k/udata.csv")

Loaded data will be a spark RDD type-run the below command to find out the data type of
the data object:

type(data)
<class 'pyspark.rdd.RDD'>

Total length of the data loaded is given by:

data.count()
100001
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To load the first record in the loaded data:

data.first()
'UserID\tItemId \tRating\tTimestamp'

We can see that the header information is located as the first row in the data object
separated by \t; the column names of the data object are UserID, ItemId, Rating, and
Timestamp.

For our purposes, we don't require Timestamp information, so we can remove this field
from the data RDD:

To check the first 5 rows of the data RDD, we use take() action method:

data.take(5)
['UserID\tItemId \tRating\tTimestamp', '196\t242\t3\t881250949',
'186\t302\t3\t891717742', '22\t377\t1\t878887116', '244\t51\t2\t880606923']

The MLlib recommendation engine module expects the data to be without any header
information. So let's remove the header information, that is, remove the first line from the
data RDD object, as follows:

Extract the first row from the data RDD object:

header = data.first()

Use filter() method and lambda expression to remove the first header row from the
data. The lambda expression below is applied for each row and each row is compared with
the header to check if the extracted row is the header or not. If the extracted row is found to
be the header then that row is filtered:

data = data.filter(lambda l:l!=header)

Now let us check the count of the data RDD object; it has reduced from 100001 to 100000:

data.count()
100000

Now let us check the first row, we can observe that the header has been successfully
removed:

data.first()
'196\t242\t3\t881250949'
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Now that we have loaded the data into the Spark environment, let's format the data into a
proper shape, as follows:

Load the required functions for building the recommendation engine, such as1.
ALS, the Matrix Factorization Model, and the Rating function from the MLlib
recommendation module.
Extract each row from the data RDD and split by \t to separate each column2.
using the map() and lambda expressions.
In the resultant set, let's create a Rating row object for each of the lines extracted3.
in the previous step
When the following expression is applied on the entire dataset, a pipelined RDD4.
object is created:

Check the data type of ratings object using type:

type(ratings)
<class 'pyspark.rdd.PipelinedRDD'>

Check the first 5 records of the ratings PipelinedRDD object by running the following code:

ratings.take(5)
[Rating(user=196, product=242, rating=3.0), Rating(user=186, product=302,
rating=3.0), Rating(user=22, product=377, rating=1.0), Rating(user=244,
product=51, rating=2.0), Rating(user=166, product=346, rating=1.0)]

We can observe from the preceding result that each row in the original raw data RDD object
turns into a kind of list of Rating row objects stacked into PipelinedRDD.

Data exploration
Now that we have loaded the data, let's spend some time exploring the data. Let's use the
Spark 2.0 DataFrame API capabilities to explore the data:

Compute the total number of unique users by first selecting the 'user' column and then
using distinct() function to remove the duplicate userId:

df.select('user').distinct().show(5)
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The following screenshot shows the results of the previous query:

Total number of unique users:

df.select('user').distinct().count()
943

Total number of unique items:

df.select('product').distinct().count()
1682

Display first 5 unique products:

df.select('product').distinct().show(5)

The following screenshot shows the results of the previous query:
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Number of rated products by each user:

df.groupBy("user").count().take(5)
[Row(user=26, count=107), Row(user=29, count=34), Row(user=474, count=327),
Row(user=191, count=27), Row(user=65, count=80)]

The previous results explain that User 26 has rated 107 movies and user 29 has rated 34
movies.

Number of records for each rating type:

df.groupBy("rating").count().show()

The following screenshot shows the results of the previous query:

In the following code, we make use of the numpy scientific computing package in Python,
used for working with arrays: matplotlibe – a visualizing package in Python:

import numpy as np
import matplotlib.pyplot as plt
n_groups = 5
x = df.groupBy("rating").count().select('count')
xx = x.rdd.flatMap(lambda x: x).collect()
fig, ax = plt.subplots()
index = np.arange(n_groups)
bar_width = 1
opacity = 0.4
rects1 = plt.bar(index, xx, bar_width,
                 alpha=opacity,
                 color='b',
                 label='ratings')
plt.xlabel('ratings')
plt.ylabel('Counts')
plt.title('Distribution of ratings')
plt.xticks(index + bar_width, ('1.0', '2.0', '3.0', '4.0', '5.0'))
plt.legend()
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plt.tight_layout()
plt.show()

Statistics of ratings per user:

df.groupBy("UserID").count().select('count').describe().show()
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Individual counts of ratings per user:

 df.stat.crosstab("UserID", "Rating").show()

Average rating given by each user:

df.groupBy('UserID').agg({'Rating': 'mean'}).take(5)

[Row(UserID=148, avg(Rating)=4.0), Row(UserID=463,
avg(Rating)=2.8646616541353382), Row(UserID=471,
avg(Rating)=3.3870967741935485), Row(UserID=496,
avg(Rating)=3.0310077519379846), Row(UserID=833,
avg(Rating)=3.056179775280899)]

Average rating per movie:

df.groupBy('ItemId ').agg({'Rating': 'mean'}).take(5)

[Row(ItemId =496, avg(Rating)=4.121212121212121), Row(ItemId =471,
avg(Rating)=3.6108597285067874), Row(ItemId =463,
avg(Rating)=3.859154929577465), Row(ItemId =148, avg(Rating)=3.203125),
Row(ItemId =1342, avg(Rating)=2.5)]
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Building the basic recommendation engine
Divide the original data into training and test datasets randomly as follows, using the
randomSplit() method:

(training, test) = ratings.randomSplit([0.8, 0.2])

Counting the number of instances in the training dataset:

training.count()
80154

Counting the number of instances in the test set:

test.count()
19846

Let's now build a recommendation engine model using the ALS algorithm available in the
MLlib library of Spark.

For this, we use the following methods and parameters:

Load the ALS module into the Spark environment.1.
Call the ALS.train() method to train the model.2.
Pass the required parameters, such as rank, number of iterations (maxIter), and3.
training data to the ALS.train() method.

Let's understand the parameters now:

Rank: This parameter is the number of latent factors of users and items to be used
in the model. The default is 10.
maxIter: This is the number of iterations the model has to run. The default is 10.

Build the recommendation model using Alternating Least Squares:

Setting rank and maxIter parameters:

rank = 10
numIterations = 10
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Calling train() method with training data, rank, maxIter params, model =
ALS.train(training, rank, numIterations):

16/10/04 11:01:34 WARN BLAS: Failed to load implementation from:
com.github.fommil.netlib.NativeSystemBLAS
16/10/04 11:01:34 WARN BLAS: Failed to load implementation from:
com.github.fommil.netlib.NativeRefBLAS
16/10/04 11:01:34 WARN LAPACK: Failed to load implementation from:
com.github.fommil.netlib.NativeSystemLAPACK
16/10/04 11:01:34 WARN LAPACK: Failed to load implementation from:
com.github.fommil.netlib.NativeRefLAPACK
16/10/04 11:01:37 WARN Executor: 1 block locks were not released by TID =
122:
[rdd_221_0]
16/10/04 11:01:37 WARN Executor: 1 block locks were not released by TID =
123:
[rdd_222_0]
16/10/04 11:01:37 WARN Executor: 1 block locks were not released by TID =
124:
[rdd_221_0]
16/10/04 11:01:37 WARN Executor: 1 block locks were not released by TID =
125:
[rdd_222_0]

Checking the model as below, we observe that Matrixfactorizationmodel object is
created:

model

Making predictions
Now that we have created the model, let's predict the values of ratings on the test set we
created earlier.

The ALS module has provided many methods discussed in the following sections for
making predictions, recommending users, and recommending items to users, user features,
item features, and so on. Let's run the methods one by one.
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Before we proceed to predictions, we shall first create test data in a way that is acceptable to
the prediction methods, as follows:

The following code extracts each row in the test data and extracts userID, ItemID and
puts it in testdata PipelinedRDD object:

testdata = test.map(lambda p: (p[0], p[1]))

type(testdata)
<class 'pyspark.rdd.PipelinedRDD'>

The following code shows the original test data sample:

test.take(5)

[Rating(user=119, product=392, rating=4.0), Rating(user=38, product=95,
rating=5.0), Rating(user=63, product=277, rating=4.0), Rating(user=160,
product=234, rating=5.0), Rating(user=225, product=193, rating=4.0)]

The following code displays the formatted data required for making predictions:

testdata.take(5)

[(119, 392), (38, 95), (63, 277), (160, 234), (225, 193)]

The prediction methods are as follows:

predict(): The predict method will the predict rating for a given user and item
and is given as follows:

This method is used when we want to make predictions for a combination of user and item:

pred_ind = model.predict(119, 392)

We can observe below that the prediction value for a user 119 and movie 392 is
4.3926091845289275: just see above the original value for the same combination in test
data:

pred_ind

4.3926091845289275
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predictall(): This method is used when we want to predict values for all the
test data in one go, given as follows:

predictions = model.predictAll(testdata).map(lambda r: ((r[0], r[1]),
r[2]))

Use the following code to check the data type:

type(predictions)
<class 'pyspark.rdd.PipelinedRDD'>

Use the following code displays the first five predictions:

 predictions.take(5)

[((268, 68), 3.197299431949281), ((200, 68), 3.6296857016488357), ((916,
68), 3.070451877410571), ((648, 68), 2.165520614428771), ((640, 68),
3.821666263132798)]

User-based collaborative filtering
Now let's recommend items (movies) to users. The ALS recommendation module contains
the recommendProductsForUsers() method to generate the top-N item
recommendations for users.

The recommendProductsForUsers() method takes integers as the input parameter,
which indicates the top-N recommendations; for example, to generate the top 10
recommendations to the users, we pass 10 as value to the
recommendProductsForUsers() method, as follows:

recommedItemsToUsers = model.recommendProductsForUsers(10)

Use the following code shows that recommendations are generated for all the 943 users:

recommedItemsToUsers.count()
943
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Let us see the recommendations for the first two users: 96 and 784:

recommedItemsToUsers.take(2)

[
(96, (Rating(user=96, product=1159, rating=11.251653489172302),
Rating(user=96, product=962, rating=11.1500279633824), Rating(user=96,
product=534, rating=10.527262244626867), Rating(user=96, product=916,
rating=10.066351313580977), Rating(user=96, product=390,
rating=9.976996795233937), Rating(user=96, product=901,
rating=9.564128162876036), Rating(user=96, product=1311,
rating=9.13860044421153), Rating(user=96, product=1059,
rating=9.081563794413025), Rating(user=96, product=1178,
rating=9.028685203289745), Rating(user=96, product=968,
rating=8.844312806737918)
)),
 (784, (Rating(user=784, product=904, rating=5.975314993539809),
Rating(user=784, product=1195, rating=5.888552423210881), Rating(user=784,
product=1169, rating=5.649927493462845), Rating(user=784, product=1446,
rating=5.476279163198376), Rating(user=784, product=1019,
rating=5.303140289874016), Rating(user=784, product=1242,
rating=5.267858336331315), Rating(user=784, product=1086,
rating=5.264190584020031), Rating(user=784, product=1311,
rating=5.248377920702441), Rating(user=784, product=816,
rating=5.173286729120303), Rating(user=784, product=1024,
rating=5.1253425029498985)
))
]

Model evaluation
Now let's evaluate the model accuracy. For this, we choose the Root Mean Squared Error
method to calculate the model accuracy. We can do it either manually, as shown next, or
call a defined function available in the Spark MLlib:
Create a ratesAndPreds object by joining the original ratings and predictions:

ratesAndPreds = ratings.map(lambda r: ((r[0], r[1]),
r[2])).join(predictions)

The following code will calculate the mean squared error:

MSE = ratesAndPreds.map(lambda r: (r[1][0] - r[1][1])**2).mean()

[Stage 860:>                                               (0 + 4) / 6]

Mean Squared Error = 1.1925845065690288
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from math import sqrt

rmse = sqrt(MSE)
rmse
1.092055175606539

Model selection and hyperparameter tuning
The most important step in any machine learning task is to use model evaluation or model
selection to find the optimal parameters that the fit the data. Spark provides infrastructure
to tune and model evaluation, for individual algorithms or for the entire model building
pipeline. Users may tune the entire pipeline model or tune individual components of the
pipeline. MLlib provides model selection tools such as CrossValidator class and
TrainValidationSplit class.

The above mentioned classes require the following items:

Estimator algorithm or Pipeline to tune
Set of ParamMaps: parameters to choose from, sometimes called a parameter grid
to search over
Evaluator: metric to measure how well a fitted model does on held-out test data

At a high level, these model selection tools work as follows:

They split the input data into separate training and test datasets
For each (training and test) pair, they iterate through the set of ParamMaps
For each ParamMap, they fit the Estimator using those parameters, get the fitted
Model, and evaluate the Model's performance using the Evaluator
They select the Model produced by the best-performing set of parameters

The MLlib supports various evaluation classes for performing evaluation tasks, such as the
RegressionEvaluator class for regression based problems, the
BinaryClassificationEvaluator class for binary classification problems, and the
MulticlassClassificationEvaluator class for multiclass classification problems. For
constructing a parameter grid, we can use the paramGridBuilder class.
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Cross-Validation
The Cross-Validation approach is one of the most popular approaches in evaluating the
datamining models and in choosing optimal parameters for building the best estimation
model. MLlib offers two types of evaluation classes: the CrossValidator and
TrainValidationSplit classes.

CrossValidator
The CrossValidator class takes the input dataset and splits it into multiple dataset folds,
which can be used as training and test sets. Using these datasets, the CrossValidator class
builds multiple models and finds optimal parameters and stores in ParamMap. After
identifying the best ParamMap, the CrossValidator class finally computes the best model
using the entire dataset. For example, let's say we choose the five-fold cross-validation; the
CrossValidator class splits the original dataset into five sub-datasets with each sub-
dataset containing training and test sets. The CrossValidator class chooses each fold set
at a time and estimates the model parameters. Finally, CrossValidator computes the
average of the evaluation metric to store the best parameters in ParamMap.

Train-Validation Split
Spark MLlib provides another class for estimating the optimal parameters using
TrainValidationSplit. Unlike CrossValidator, this class estimates the optimal
parameters on a single dataset. For example, the TrainValidatorSplit class divides the
input data into trainset and test sets of size 3/4 and 1/4, and optimal parameters are chosen
using these sets.

Now, let's understand the recommendation engine model we built earlier.

The tuning model is present in the MLlib of Spark 2.0 and makes use of DataFrame API
features. So in order to accommodate this, our first step is to convert the original dataset
ratings to DataFrame.

For conversion, we use the sqlContext object and the createDataFrame() method to
convert the ratings RDD object to a DataFrame object, as follows:

type(ratings)
<class 'pyspark.rdd.PipelinedRDD'>
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SQL Context object is created when starting the spark session using pyspark:

sqlContext
<pyspark.sql.context.SQLContext object at 0x7f24c94f7d68>

Creating a DataFrame object from the ratings rdd object as follows:

df = sqlContext.createDataFrame(ratings)

type(df)

<class 'pyspark.sql.dataframe.DataFrame'>

Display first 20 records of dataframe object:

df.show()

The following screenshot shows the results of the previous query:
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Creating random samples of training set and test set using randomSplit() method:

(training, test) = df.randomSplit([0.8, 0.2])

Load modules required for running parameter tuningmodel:

from pyspark.ml.recommendation import ALS

Call the ALS method available in MLlib to building the recommendation engine. The
following method ALS() takes only column values of training data, such as UserID,
ItemId, and Rating. The other parameters, such as rank, number of iterations, learning
parameters, and so on will be passed as the ParamGridBuilder object to the cross-
validation method.

As mentioned earlier, the model tuning pipeline require Estimators, a set of ParamMaps,
and Evaluators. Let's create each one of them, as follows:

Estimator objects as stated earlier, estimators take algorithm or pipeline objects as input. Let
us build one pipeline object as follows:

Calling ALS algorithm:

als = ALS(userCol="user", itemCol="product", ratingCol="rating")
als

ALS_45108d6e011beae88f4c

Checking the type of als object:

type(als)
<class 'pyspark.ml.recommendation.ALS'>

Let us see how the default parameters are set for the ALS model:

als.explainParams()
"alpha: alpha for implicit preference (default: 1.0)\ncheckpointInterval:
set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means
that the cache will get checkpointed every 10 iterations. (default:
10)\nfinalStorageLevel: StorageLevel for ALS model factors. (default:
MEMORY_AND_DISK)\nimplicitPrefs: whether to use implicit preference
(default: False)\nintermediateStorageLevel: StorageLevel for intermediate
datasets. Cannot be 'NONE'. (default: MEMORY_AND_DISK)\nitemCol: column
name for item ids. Ids must be within the integer value range. (default:
item, current: ItemId )\nmaxIter: max number of iterations (>= 0).
(default: 10)\nnonnegative: whether to use nonnegative constraint for least
squares (default: False)\nnumItemBlocks: number of item blocks (default:
10)\nnumUserBlocks: number of user blocks (default: 10)\npredictionCol:
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prediction column name. (default: prediction)\nrank: rank of the
factorization (default: 10)\nratingCol: column name for ratings (default:
rating, current: Rating)\nregParam: regularization parameter (>= 0).
(default: 0.1)\nseed: random seed. (default:
-1517157561977538513)\nuserCol: column name for user ids. Ids must be
within the integer value range. (default: user, current: UserID)"

From the preceding result, we observe that the model is set to its default values for rank as
10, maxIter as 10, and blocksize as 10:

Create pipeline object and setting the created als model as a stage in the pipeline:

from pyspark.ml import Pipeline

pipeline = Pipeline(stages=[als])
 type(pipeline)
<class 'pyspark.ml.pipeline.Pipeline'>

Setting the ParamMaps/parameters
Let's observe the ALS() method closely and logically and infer the parameters that can be
used for parameter tuning:

rank: We know that rank is the number of latent features for users and items, which, by
default, is 10, but if we do not have the optimal number of latent features for a given
dataset, this parameter can be taken up for tuning the model by giving a range of values
between 8 and 12 - the choice is left to the users. Due to the computational cost, we restrict
the values to 8 -12, but readers are free to try other values.

MaxIter: MaxIter is the number of times the model is made to run; it's set to a default 10.
We can select this parameter also for tuning as we do not know the optimal iterations at
which the model performs well; we select between 10 and 15.

reqParams: regParams is the learning parameter set between 1 and 10.

Loading CrossValidation and ParamGridBuilder modules to create range of
parameters:

from pyspark.ml.tuning import CrossValidator, ParamGridBuilder

paramMapExplicit = ParamGridBuilder() \
                    .addGrid(als.rank, [8, 12]) \
                    .addGrid(als.maxIter, [10, 15]) \
                    .addGrid(als.regParam, [1.0, 10.0]) \
                    .build()
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Setting the evaluator object
As stated earlier, the evaluator object sets the evaluation metric to evaluate the model
during multiple runs in the cross validation method:

Loading the RegressionEvaluator model:

from pyspark.ml.evaluation import RegressionEvaluator

Calling RegressionEvaluator() method with evaluation metric set to rmse and
evaluation column set to Rating:

evaluatorR = RegressionEvaluator(metricName="rmse", labelCol="rating")

Now that we have prepared all the required objects for running the cross-validation
method, that is, Estimator, paramMaps, and Evaluator, let's run the model.

The cross-validation method gives us the best optimal model out of all the executed models:

cvExplicit = CrossValidator(estimator=als, estimatorParamMaps=paramMap,
evaluator=evaluatorR,numFolds=5)

Running the model using fit() method:

cvModel = cvExplicit.fit(training)

[Stage 897:============================>                           (5 + 4)
/ 10]
[Stage 938:==================================================>     (9 + 1)
/ 10]
[Stage 1004:>(0 + 4) / 10][Stage 1005:> (0 + 0) / 2][Stage 1007:>(0 + 0) /
10]
[Stage 1008:>                                                     (3 + 4) /
200]

preds = cvModel.bestModel.transform(test)
evaluator = RegressionEvaluator(metricName="rmse",
labelCol="rating",predictionCol="prediction")
rmse = evaluator.evaluate(pred)
print("Root-mean-square error = " + str(rmse))
 rmse

0.924617823674082
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Summary
In this chapter, we learned about model-based collaborative filtering using matrix
factorization methods using ALS. We used the Python API to access the Spark framework
and ran the ALS collaborative filtering. In the beginning of the chapter, we refreshed our
knowledge of Spark with all the basics that are required to run the recommendation
engines, such as what Spark is, the Spark ecosystem, components of Spark, SparkSession,
DataFrames, RDD, and so on. As explained then, we explored the MovieLens data, built a
basic recommendation engine, evaluated the model, and used parameter tuning to improve
the model. In the next chapter, we shall learn about building recommendations using Graph
database – Neo4j.



8
Building Real-Time

Recommendations with Neo4j
The world we live in is a big, interconnected place. Anything and everything that exists in
this world is connected together in some way. Relationships and connections exist among
the entities that inhabit this world.

The human brain tries to store or extract information in the form of networks and relations.
Perhaps this is a more optimal way of representing data, so that storing and retrieval of
information is fast and efficient. What if we have a system that works in a similar way. We
can use graphs; they are a systematic and methodical approach to representing data.

Before we move ahead with this chapter it is essential to understand the background and
necessity of graphs.

Credit for the concept behind the graph theory is given to the 18th Century mathematician,
Leonhard Euler, who solved the age-old problem known as The Bridges of Konigsberg,
which is essentially a pathfinding problem. Although we won't look further at this problem,
I suggest that readers attempt to understand how Euler has come up with a new paradigm
approach in understanding and solving the problem.

Graphs are found everywhere in today's world and are one of the most efficient and natural
ways of working with data.

Graph can represent how two or more real world entities, represented as nodes, are
connected to each other. We also learn how each of them are related to the other, and how
this helps to communicate information in a  fast, efficient , visual way. Since graph systems
allow us to express anything in an expressive, structured way, we can apply these systems
across domains such as social networks, medicine, science and technology and many more.
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To better understand graph representation, we can take an example of networking on
Facebook. Let us assume there are three friends John, Paul and Krish, connected on
Facebook. JOHN-KRISH are mutual friends, PAUL-KRISH are mutual friends and PAUL is
FriendOf of JOHN. How do we represent this information? Take a look at the following
diagram:

Don't we feel that the above representation is one of the  most efficient and natural ways of
representing data and its relations? In the previous diagram, JOHN-KRISH-PAUL are Nodes
representing User entities, and FriendOf arrows are edges which represents the
relationships between the Nodes. We can also store the demographic details of User Nodes –
such as age and details of relationship  (such as FriendSince) – as Properties in the Graphs.
By applying Graph Theory concepts we can find similar Users in a Network or suggest new
Friends to Users within the Friends Network. We shall learn about more on this in later
sections.

Discerning different graph databases
Graph databases have revolutionized the way people discover new products and share
information with one another. In the human mind, we remember people, things, places, and
so on, as graphs, relations, and networks. When we try to fetch information from these
networks we go directly to the required connection or graph and fetch information
accurately. In a similar fashion, graph databases allow us to store the users and product
information in graphs as nodes and edges (relations). Searching a graph database is fast.
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A graph database is a type of NoSQL database that uses graph theory to store, map and
query relationships. Graph databases excel at managing highly connected data and
managing complex queries. They are mainly used for analyzing the interconnections
between data. Here, the priority is given to relations, so that we don't have to bother with
the foreign keys, as in the case of SQL.

Graph databases mainly consist of nodes and edges, wherein nodes represent the entities
and edges the relations between them. The edges are directed lines or arrows that connect
the nodes. In the preceding diagram, the circles are the nodes that represent the entities, and
the lines connecting the nodes are called the edges – these represent relationships. The
orientation of arrows follows the flow of information. By presenting all nodes and links of
the graph, it helps users get a global view of the structure.

Neo4j, FlockDB, AllegroGraph, GraphDB, and InfiniteGraph are some of the graph
databases available. Let us have a look at Neo4j, one of the most popular among them,
made by Neo Technology.

Neo4j is so popular because of its strength, swiftness and scalability. It is mainly
implemented in Scala and Java. It is available in both the community and enterprise
editions. The enterprise edition has the same features as the community one, with
additional features like enterprise-grade availability, management and scale-up and scale-
out capabilities. In the case of RDBMS, the performance degrades exponentially as the
number of relations increases, whereas in Neo4j it is linear. The following image shows the
various graph databases:
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Labeled property graph
In the introduction section, we have seen an example of a Social Network representation of
three friends. This graph representation of data which contains directed connections
between entities/nodes, relationships between nodes, and properties associated with nodes
and relationships is called a labeled property graph data model.

A labeled property graph data model has the following properties:

Graph contains nodes and relationships
Nodes may contain properties (key-value pairs)
Nodes may be labeled with one or more labels
Relationships are named and directed, and always have a start and end node
Relationships may also contain properties

Listed concepts are explained in the following section.

Understanding GraphDB core concepts
The following list enumerates all the elements of a graph:

Nodes: Nodes are the fundamental unit of a graph. Nodes are the vertices in the
graph. It mostly refers to the main object that is being referred. Nodes can
contains labels and properties. From the story, we can pull three different objects
and make three nodes. Two of those are for friends and the other one is for the
movie.
Labels: Labels are the way to differentiate between the same kinds of objects.
Labels are generally given to each node with similar characteristics. Nodes can
have more than one label. In the example story, we gave labels of PERSON and
MOVIE. This optimized the graph traversal and also helped in logically querying
the model efficiently.
Relationships: Relationships are the edge between two nodes. They can be
unidirectional and bidirectional. They can also contain the property for which the
relationship is being created. Relationships are named and directed, and always
have a start and end node. For example, there is a relationship of Friend Of
between two friends. This shows the connection between different nodes. There
is also a relation of Has Watched between each of the friends with the movie node.



Building Real-Time Recommendations with Neo4j

[ 249 ]

Properties: Properties are key value pairs. Properties can be used for both nodes
and relationships. They are used to save the details about a particular node or
relationship. In the example, the Person node has the properties of name and age.
These properties are used to distinguish different nodes. Relation Has Watched
also has the properties of date and rating.

In the following diagram, JOHN, KRISH, and PAUL are nodes that are mapped as User
labels. Also, observe the edges that show relations. Both nodes and relations can have
properties to further describe them:



Building Real-Time Recommendations with Neo4j

[ 250 ]

Neo4j
Neo4j is an open-source Graph Database implemented in Java and Scala. Neo4j implements
labeled property graph model efficiently. Like any other database, Neo4j provides ACID
transactions, runtime fail-over and cluster support, allowing it for developing production
ready applications. This graph database architecture is designed for efficient data storage
and faster traversal between Nodes and relations. To work with the data for storing,
retrievals and traversal, we use CYPHER query language which is Neo4j's query language
based on patterns.

Cypher query language
Cypher is the query language for Neo4j that follows SQL-like queries. It is a declarative
query language that focuses on what to retrieve from the graph, rather than how to retrieve
it. We know that Neo4j property graphs consist of nodes and relationships; though these
nodes and relationships are the basic building blocks, the real power of a graph database is
to identify the underlying patterns that exist between nodes and relationships. This pattern
extraction capability of graph databases, such as Neo4j, helps us to perform complex
operations very quickly and efficiently.

Neo4j's Cypher query language is based on patterns. These patterns are used for matching
underlying graph structures so that we may make use of patterns for further processing,
such as building recommendation engines, in our case.

An example of extracting patterns using a Cypher query is shown later. The following
Cypher query matches all friendof patterns between pairs of users and returns them as a
graph:
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Cypher query basics
Before we go into building recommendations using Neo4j, let us look into the basics of
Cypher query. As we mentioned earlier, Cypher is the query language for Neo4j that
follows SQL-like queries. Being a declarative language, Cypher focuses on what to retrieve
from the graph rather than how to retrieve it. The key principles and capabilities of Cypher
are as follows:

Cypher matches key patterns between nodes and relationships in the graph to
extract information from the graph.
Cypher has many capabilities similar to SQL such as create, delete, and update.
These operations are applied to nodes and relationships to fetch information.
Indexing and constraints similar to SQL are also present.

Node syntax
Cypher uses pairs of parentheses () or pairs of parenthesis with text inside to represent
nodes. Furthermore, we can assign labels, and properties of nodes are given as key-value
pairs.

Look at the following example to understand the concept better. In the following queries,
node is represented using () or (user), label is represented with u, (u:user) and
properties of the node are assigned with key-value pairs as (u:user{name:'Toby'}) :

()
(user)
(u:user)
(u:user{name:'Toby'})

Relationship syntax
Cypher uses -[]-> to represent relationships between two nodes. These relationships allow
developers to represent complex relations between nodes, making them easier to read or
understand.
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Let us look at the following example:

 -[]->
(user) -[f:friendof]->(user)
(user) -[f:friendof {since: 2016}]->(user)

In the preceding example, a friendof relationship is established between two user nodes
and the relationship is having property since:2016.

Building your first graph
Now that we saw the node syntax and relationship syntax, let us practice what we have
learned so far by creating a Facebook social network graph similar to the following
diagram:
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In order to create the above graph, we need following steps:

Create 3 nodes Person with labels JOHN, PAUL, KRISH1.
Create relationships between 3 Nodes2.
Set properties3.
Display results used with all the patterns4.

Creating nodes
We use the CREATE clause to create graph elements such as nodes and relations. The below
example shows us how to create a single node Person labeled as john and having the
property name:JOHN. When we run the below query in Neo4j browser, we get the graph as
shown in the following screenshot:

CREATE (john:Person {name:"JOHN"})  RETURN  john

The RETURN clause helps to return the result set, namely Node –
PERSON

Instead of just creating one node, we can create multiple nodes as follows:

CREATE (paul:Person {name:"PAUL"})
CREATE (krish:Person {name:"KRISH"})
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Earlier code will create three nodes, and Person labelled JOHN, PAUL, KRISH. Let's see what
we have created so far; to see the results we have to use MATCH clause. MATCH clause will
check for the required patterns and return the retrieved patterns using RETURN clause. In
the below query, MATCH will look for patterns such as Person nodes with labels names k,p,j
and their corresponding labels:

MATCH(k:Person{name:'KRISH'}),(p:Person{name:'PAUL'}),(j:Person{name:'JOHN'
}) RETURN k,p,j

Creating relationships
With creation of nodes we are half done. Now, let's complete the remaining portion by
creating relations.

Instructions for creating relationships are as follows:

Extract the nodes from the database using the MATCH clause
Create the required relationships between the Persons using the CREATE clause

In the following query, we are extracting all the Person nodes and then creating
relationships called FRIENDOF between the nodes:

MATCH(k:Person{name:'KRISH'}),(p:Person{name:'PAUL'}),(j:Person{name:'JOHN'
})
CREATE (k)-[:FRIENDOF]->(j)
CREATE (j)-[:FRIENDOF]->(k)
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CREATE (p)-[:FRIENDOF]->(j)
CREATE (p)-[:FRIENDOF]->(k)
CREATE (k)-[:FRIENDOF]->(p)

The following screenshot shows the result displayed when we run the earlier query:

Now we have created all the required nodes and relationships. To see what we have
achieved, run the following query, which displays Nodes and relationships between the
nodes:

match(n:Person)-[f:FRIENDOF]->(q:Person) return f
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Setting properties to relations
The final step is to set properties to node labels and relationships, and is explained as
follows:

We use the SET clause to set the properties. For setting properties to relations we need to
follow two steps:

Extract all the relations , FRIENDOF1.
Use the SET clause to set the properties to these relations2.

In the following example, we set the properties to the relation FRIENDOF between KRISH
and PAUL with the property friendsince as follows:

MATCH (k:Person{name:'KRISH'})-[f1:FRIENDOF]-> (p:Person{name:'PAUL'}),
(k1:Person{name:'KRISH'})<-[f2:FRIENDOF]- (p1:Person{name:'PAUL'})
SET f1.friendsince = '2016', f2.friendsince = '2015'

In the previous query , ()-[]-> pattern extracts relation Krish is
friendOfPaul and () <- [] - pattern extracts relation Paul is
friendOf of Krish.

Let's display the results so far as follows:

match(n:Person)-[f:FRIENDOF]->(q:Person) return f
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The following diagram shows the nodes, relationships and properties added in the previous
query.

In the preceding diagram we can see that for KRISH and PAUL the property for the
FRIENDOF relation has been set as friendsince.
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Similarly, we can set the properties to the nodes as follows:

MATCH(k:Person{name:'KRISH'}),(p:Person{name:'PAUL'}),(j:Person{name:'JOHN'
})
SET k.age = '26' ,p.age='28',
j.age='25',k.gender='M',p.gender='M',j.gender='M'

Let's verify the results here using the following query, which displays nodes, relationships,
labels, properties to nodes, and relationships:

match(n:Person)-[f:FRIENDOF]->(q:Person) return f
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Loading data from csv
In the previous section, we created nodes, relationships, and properties manually. Most of
the time, we create nodes by loading data from csv files. To achieve this, we use the LOAD
CSV command readily available in Neo4j, to load data into the Neo4j browser.

The following screenshot shows the dataset we will be using for this section which contains
user-movie-rating data.

Query below to load csv data given below:

LOAD CSV WITH HEADERS FROM 'file:///C:/ Neo4J/test.csv' AS RATINGSDATA
RETURN RATINGSDATA
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In the preceding query:

The HEADERS keyword allows us to ask the query engine to consider the first
row as header information
The WITH keyword is similar to the return keyword; it separate portions of the
query explicitly and allows us to define which values or variables we should
carry forward to the next parts of the query
The AS keyword is used to create an alias name to variables

When we run the above query, two things happen:

CSV data will be loaded to the graph database
The RETURN clause will display the loaded data, as shown in the following
screenshot:
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Neo4j Windows installation
In this section, we will see how to install Neo4j for Windows. We can download the Neo4j
Windows installer from the following URL:

h t t p s ://n e o 4j . c o m /d o w n l o a d /

Once the installer is downloaded, click on the installer to get the following screen to
proceed with installation:
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After successful installation, start the Neo4j Community Edition. For the first time you will
see the following screen, asking you to choose a directory to store the graph database, and
then click on Start:

In our case we have chosen the default directory where the graphdb database is created as
follows:

C:\Users\Suresh\Documents\Neo4J\default.graphdb

After we click the start button, as shown in the preceding screenshot, start Neo4j will be
started and will be displayed as below. We are now ready to start working on Neo4j.
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Now that we have started Neo4j, we can access it from the browser by using:

http://localhost:7474

Installing Neo4j on the Linux platform
In this section we learn about downloading and installing Neo4j on the CentOS Linux
platform.

Downloading Neo4j
We can download the latest version of the Neo4j 3 Linux source file from the Neo4j home
page:

https://Neo4J.com/

Click on the Download Neo4J button on the page shown as follows:

Alternatively you can download it directly from the following URL:
http://info.Neo4J.com/download-thanks.html?edition=community&rel
ease=3.0.6&flavour=unix&_ga=1.171681440.1829638272.1475574249

https://neo4j.com/
http://info.neo4j.com/download-thanks.html?edition=community&release=3.0.6&flavour=unix&_ga=1.171681440.1829638272.1475574249
http://info.neo4j.com/download-thanks.html?edition=community&release=3.0.6&flavour=unix&_ga=1.171681440.1829638272.1475574249
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This will download a tar file – Neo4J-community-3.0.6-unix.tar.gz as shown in the
following screenshot:

We can find the developer resources at h t t p s ://N e o 4J . c o m /d e v e l o p e r /g
e t - s t a r t e d /

Setting up Neo4j
Extract the tar file and you will get a folder called Neo4J-community-3.0.6 containing
the following files:

Starting Neo4j from the command line
Make sure you install Java 8 in your PC, as Neo4j 3.0 version requires Java 8. Check the
Neo4j requirements before you install.

Once you have installed Java 8 then we can go ahead and run our Neo4j instance, but before
that, let us set the Neo4J path in the bashrc file as follows:

gedit ~/.bashrc
export NEO4J_PATH=/home/1060929/Softwares/Neo4J/Neo4J-community-3.0.6
export PATH=$PATH:$NEO4J_PATH/bin
source ~/.bashrc
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We Start the Neo4j in command line using the following command:

Neo4J start

We can observe that the Neo4j has been started and we can access the graph
dbcapabilites from the browser at http://localhost:7474/

For the first time, running Neo4j in the browser requires you to set the Username and
Password:
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Once we have set the credentials it will redirect to the following page:

If you are using it for the first time, spend some time on the browser to get acquainted with
its features and explore the different options available on the left-hand panel. Enter the
following command in the browser to display the connection details:

:server connect

basic usage :
getting help on Neo4J in the browser:
:help



Building Real-Time Recommendations with Neo4j

[ 267 ]

Building recommendation engines
In this section, we will learn how to generate collaborative filtering recommendations using
three approaches. They are as follows:

A simple count of co-rated movies
Euclidean distance
Cosine similarity

I would like to highlight a point at this junction. In earlier chapters, we learnt that for
building recommendation engines using heuristic approaches, we used similarity
calculations such as Euclidean distance/cosine distance. It is not necessary to use only these
approaches; we are free to choose our own way of computing the closeness or extracting the
similarity between two users just by simple counts as well, for example, similarity between
two users can be extracted just by counting the number of the same movies two users have
co-rated. If more movies have been co-rated by two users then we may assume that they are
similar to each other. If the count of co-rated movies between two people is less then we
may assume that their tastes are different.

This assumption is taken to build our first recommendation engine and is explained as
follows:

For building a collaborative movie recommendation engine, we will build a system based
on past movie rating behavior of users. The steps we follow can be summarized as follows:

Loading data into an environment1.
Extracting relations and extracting similarity between users2.
Recommendation step3.
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Loading data into Neo4j
Though we have multiple ways of loading data into Neo4j, we use the Load CSV option to
import the data into the browser tool. The following diagram shows the workflow of the
process of loading the CSV process:
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The dataset we use for this section is the small sample data set containing Users-Movies-
ratings, as shown in the following screenshot:

Let's load the MovieLens data into the Neo4j browser tool as follows:

LOAD CSV WITH HEADERS FROM file:///ratings.csv AS line
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Now let's create Users and Movies as nodes and the ratings given by Users to Movies as the
relations.

The MERGE clause will find the query patterns in the data, and if it doesn't find any it will
create one. In the following example below, first it look for a User Node (pattern) and then
creates one if it doesn't exist. Since we have just loaded the data into GraphDB, we need to
create nodes and establish relationships. Following code will first looks for the mentioned
nodes and relationships; if not found it will create new nodes and relationships:

LOAD CSV WITH HEADERS FROM file:///C:/Neo4J/test.csv AS line MERGE (U:USER
{USERID : line.UserID})
WITH line, U
MERGE (M:MOVIE {ITEMID : line.ItemId})
WITH line,M,U
MERGE (U)-[:hasRated{RATING:line.Rating}]->(M);

When we run the previous query, nodes, relationships, and properties will be created as
shown in the following screenshot:

Now, we shall understand each line one by one to make our understanding more clear.

Merge will create USER Node from UserID columns from the original data:

MERGE (U:USER {USERID : line.UserID})

The With command will take the User node and line object to the next part of the query as
follows:

WITH line, U

Now we will create Movie Node using MERGE and line.ItemId object as follows:

MERGE (M:MOVIE {ITEMID : line.ItemId})
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We carry forward the Movie, User nodes, and line object to the next part of the query as
follows:

WITH line,M,U

We create a relation between USER node and MOVIE node as follows:

MERGE (U)-[:hasRated{RATING:line.Rating}]->(M);

Now that we have loaded the data into Neo4j, we can visualize the movie ratings data with
users, movies and ratings as follows:

MATCH (U:USER)-[R:hasRated]->(M:MOVIE) RETURN R

In the following image, all users are created in green color, and movies are created in red
color. We can also see the relationships as arrows with directions.
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Generating recommendations using Neo4j
We have now created all the required graphs for building our first recommendation engine
using Neo4j. Let's get started.

In the following query COUNT() function will count the number of
instances, collect() will.

The following screenshot will return movie recommendations to the sample user 'TOBY':

match(u1:USER)-[:hasRated]->(i1:MOVIE)<-[:hasRated]-(u2:USER)-
[:hasRated]->(i2:MOVIE)
with u1,u2, count(i1) as cnt , collect(i1) as Shareditems,i2
where not(u1-[:hasRated]->i2) and u1.USERID='Toby' and cnt> 2
return distinct i2.ITEMID as Recommendations

The following query shows the recommendations made to Toby when we run the earlier
query:

The concept behind making recommendations in the previous query is as follows:

Extract pair of users who have rated the same movies
Take the count of commonly rated movies by each pair of users
The higher the commonly rated movie count, the more similar two users are to
each other
The final step is to extract all the movies which similar users have rated, but
which have not been rated by the active user, and suggest these new movies as
recommendations to the active user
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Let's understand the query we just saw step by step:

In line one, for each user (say USER1) who has rated a movie (say MOVIE1), select
all the users (say USER2) who have also rated MOVIE1. For this USER2, also extract
other movies rated by him, apart from MOVIE1.
In line two, we carry similar users (u1,u2), calculating the count of co-rated
movies by u1,u2, and extracting shared/co-rated movies by u1,u2 to the next part
of the query.
In line three, we now apply a filter where we choose those movies that are not
being rated by u1 and the count of co-rated movies greater than two.
In line 4 we return new movies rated by similar users to u1 as recommendations.

Collaborative filtering using the Euclidean
distance
In the previous section, we saw how to build recommendation engines using a simple
count-based approach for identifying similar users, and then we chose movies from similar
users which the active user has not rated or recommended.

In this section, instead of computing the similarity between two users based on the simple
count of co-rated movies, let us make use of the rating information and calculate the
Euclidean distance, to come up with the similarity score.

The following cypher query will generate recommendations for the user, Toby, based on the
Euclidean similarity:

The first step is to extract co-rated users by movies and calculate the Euclidean1.
distance between co-rated users as follows:

        MATCH (u1:USER)-[x:hasRated]-> (b:MOVIE)<-[y:hasRated]-
          (u2:USER)
        WITH count(b) AS CommonMovies, u1.username AS user1,
          u2.username AS user2, u1, u2,
        collect((toFloat(x.RATING)-toFloat(y.RATING))^2) AS ratings,
        collect(b.name) AS movies
        WITH CommonMovies, movies, u1, u2, ratings
        MERGE (u1)-[s:EUCSIM]->(u2) SET s.EUCSIM = 1-
          (SQRT(reduce(total=0.0, k in extract(i in ratings |
            i/CommonMovies) | total+k))/4)
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In this code we are using reduce() and extract() to calculate the
Euclidean distance. In order to apply mathematical calculations, we have
changed the values to floating point numbers using the float() function
in the following query.

To see the Euclidean distance values between pairs of users, run the below
query:

        MATCH (u1:USER)-[x:hasRated]-> (b:MOVIE)<-[y:hasRated]-
          (u2:USER)
        WITH count(b) AS CommonMovies, u1.username AS user1,
          u2.username AS user2, u1, u2,
        collect((toFloat(x.RATING)-toFloat(y.RATING))^2) AS ratings,
        collect(b.name) AS movies
        WITH CommonMovies, movies, u1, u2, ratings
        MERGE (u1)-[s:EUCSIM]->(u2) SET s.EUCSIM = 1-
          (SQRT(reduce(total=0.0, k in extract(i in ratings |
            i/CommonMovies) | total+k))/4) return s as SIMVAL,
              u1.USERID as USER,u2.USERID as Co_USER;

In the second step, we calculate the Euclidean distance using the formula2.
sqrt(sum((R1-R2)*(R1-R2))), where R1 is the rating given by Toby for a movie1
and R2 is the other co-rated user's rating for the same movie1, and we take the
top three similar users, as follows:

        MATCH (p1:USER {USERID:'Toby'})-[s:EUCSIM]-(p2:USER)
        WITH p2, s.EUCSIM AS sim
        ORDER BY sim DESC
        RETURN distinct p2.USERID AS CoReviewer, sim AS similarity
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The final step is to suggest or recommend non-rated movies from the top three3.
similar users to Toby as follows:

        MATCH (b:USER)-[r:hasRated]->(m:MOVIE), (b)-[s:EUCSIM]-(a:USER
          {USERID:'Toby'})
        WHERE NOT((a)-[:hasRated]->(m))
        WITH m, s.EUCSIM AS similarity, r.RATING AS rating
        ORDER BY m.ITEMID, similarity DESC
        WITH m.ITEMID AS MOVIE, COLLECT(rating) AS ratings
        WITH MOVIE, REDUCE(s = 0, i IN ratings |toInt(s) +
          toInt(i))*1.0 / size(ratings) AS reco
        ORDER BY recoDESC
        RETURN MOVIE AS MOVIE, reco AS Recommendation
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Let us explain the preceding query in detail as follows:

As we explained in the first step, we extract co-rated movies by users along with1.
their ratings as follows:

In our example, Toby has rated three movies: Snakes on a Planet, Superman
Returns, and You Me and Dupree. Now we have to extract other common
users who have co-rated the same three movies as Toby. For this, we use the
following query:

        MATCH (u1:USER{USERID:'Toby'})-[x:hasRated]-> (b:MOVIE)<-
          [y:hasRated]-(u2:USER)
        return u1, u2,
        collect(b.ITEMID) AS CommonMovies,
        collect(x.RATING) AS user1Rating,
        collect(y.RATING) AS user2Rating

The second step is to calculate the Euclidean distance between the ratings given2.
to each co-rated movie by the other users, to the movies of Toby, and this is
calculated using the following query:

        MATCH (u1:USER)-[x:hasRated]-> (b:MOVIE)<-[y:hasRated]-
          (u2:USER)
        WITH count(b) AS CommonMovies, u1.username AS user1,
          u2.username AS user2, u1, u2,
        collect((toFloat(x.RATING)-toFloat(y.RATING))^2) AS ratings,
        collect(b.name) AS movies
        WITH CommonMovies, movies, u1, u2, ratings
        MERGE (u1)-[s:EUCSIM]->(u2) SET s.EUCSIM = 1-
          (SQRT(reduce(total=0.0, k in extract(i in ratings |
            i/CommonMovies) | total+k))/4)
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In the preceding query, we create and merge new relationships between each
of the co-rated users to show the distance between two users, using the
MERGE clause. Also, we set the property of the relationship as EUCSIM
(which represents the Euclidean distance between each of the co-rated users)
using the SET clause.

Now that we have created new relations and set the values of the similarity
distances, let us view the results as given by the following query:

        MATCH (p1:USER {USERID:'Toby'})-[s:EUCSIM]-(p2:USER)
        WITH p2, s.EUCSIM AS sim
        ORDER BY sim DESC
        RETURN distinct p2.USERID AS CoReviewer, sim AS similarity

The following screenshot shows the similarity value for Toby with other
users:
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The final step is to predict the non-rated movies by Toby, and then recommend3.
the top-rating predicted items. To achieve this, we employ the following steps:

Extract the movies rated by similar users to Toby, but not rated by
Toby himself
Take the ratings given for all the non-rated movies and average them,
to predict the ratings that Toby might give to these movies.
Display the sorted results as per the predicted rating, in descending
order.

To achieve this, use the following query:

        MATCH (b:USER)-[r:hasRated]->(m:MOVIE), (b)-[s:EUCSIM]-(a:USER
          {USERID:'Toby'})
        WHERE NOT((a)-[:hasRated]->(m))
        WITH m, s.EUCSIM AS similarity, r.RATING AS rating ORDER BY
          similarity DESC
        WITH m.ITEMID AS MOVIE, COLLECT(rating) AS ratings
        WITH MOVIE, REDUCE(s = 0, i IN ratings |toInt(s) +
          toInt(i))*1.0 / size(ratings) AS reco
        ORDER BY reco DESC
        RETURN MOVIE AS MOVIE, reco AS Recommendation

Let us understand the recommendations query line-by-line as follows:

The following query fetches the patterns of all the users who are similar to Toby, and all the
movies rated by similar users, as follows:

MATCH (b:USER)-[r:hasRated]->(m:MOVIE), (b)-[s:EUCSIM]-(a:USER
{USERID:'Toby'})
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The WHERE NOT clause will filter out all the movies that have been rated by similar users
but not by Toby, as follows:

WHERE NOT((a)-[:hasRated]->(m))

Movies, similarity values and ratings given by the co-users are passed to the next part of the
query using the WITH clause and the results are ordered by descending similarity value as
follows:

WITH m, s.EUCSIM AS similarity, r.RATING AS rating ORDER BY similarity DESC

After sorting the results based on the similarity values, we further allow values, such as
movie name and ratings, to the next part of the query using the WITH clause, as follows:

WITH m.ITEMID AS MOVIE, COLLECT(rating) AS ratings

This is the main step for recommending movies to Toby, predicting the ratings for non-
rated movies by Toby by taking the average of movie ratings by similar users to Toby, and
using the REDUCE clause, as follows:

WITH MOVIE, REDUCE(s = 0, i IN ratings |toInt(s) + toInt(i))*1.0 /
size(ratings) AS reco

Finally, we sort the final results and return the top movies to Toby as follows:

ORDER BY recoDESC
RETURN MOVIE AS MOVIE, reco AS Recommendation

Collaborative filtering using Cosine similarity
Now that we have seen recommendations based on simple count and Euclidean distances
for identifying similar users, let us use Cosine similarity to calculate the similarity between
users.
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The following query is used to create a new relation called similarity between users:

MATCH (p1:USER)-[x:hasRated]->(m:MOVIE)<-[y:hasRated]-(p2:USER)
WITH SUM(toFloat(x.RATING) * toFloat(y.RATING)) AS xyDotProduct,
SQRT(REDUCE(xDot = 0.0, a IN COLLECT(toFloat(x.RATING)) | xDot
+toFloat(a)^2)) AS xLength,
SQRT(REDUCE(yDot = 0.0, b IN COLLECT(toFloat(y.RATING)) | yDot +
toFloat(b)^2)) AS yLength,
p1, p2
MERGE (p1)-[s:SIMILARITY]-(p2)
SET s.similarity = xyDotProduct / (xLength * yLength)

Let us explore the similarity values as follows:

match(u:USER)-[s:SIMILARITY]->(u2:USER) return s;
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We calculate the similar users for Toby as follows:

For the active user Toby, let us display the similarity values with respect to other users as
follows:

MATCH (p1:USER {USERID:'Toby'})-[s:SIMILARITY]-(p2:USER)
WITH p2, s.similarity AS sim
ORDER BY sim DESC
LIMIT 5
RETURN p2.USERID AS Neighbor, sim AS Similarity

The following image displays the results by running the previous Cypher query; the results
show the similarity value for Toby, with respect to other users.

Now let us start our recommendations of movies to Toby. The recommendation process is
very similar to what we have done in the previous approach, as follows:

Extract movies rated by similar users to Toby but not rated by Toby himself
Take the ratings given for all the non-rated movies and average them to predict
the ratings that Toby might give to these movies
Display the sorted results as per the predicted rating, in descending order
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We use the following code:

MATCH (b:USER)-[r:hasRated]->(m:MOVIE), (b)-[s:SIMILARITY]-(a:USER
  {USERID:'Toby'})
WHERE NOT((a)-[:hasRated]->(m))
WITH m, s.similarity AS similarity, r.RATING AS rating
ORDER BY m.ITEMID, similarity DESC
WITH m.ITEMID AS MOVIE, COLLECT(rating) AS ratings
WITH MOVIE, REDUCE(s = 0, i IN ratings |toInt(s) + toInt(i))*1.0 /
  size(ratings) AS reco
ORDER BY reco DESC
RETURN MOVIE AS MOVIE, reco AS Recommendation

Summary
Kudos! We have created recommendation engines using the Neo4j graph database. Let us
recap what we have learned in this chapter. We started the chapter by giving a very brief
introduction to graphs and graph databases. We covered a very short introduction to the
core Neo4j graph database concepts such as the labeled property graph model, Nodes,
Labels, Relationships, Cypher query language, Patterns, Node syntax, and Relationship
Syntax.

We also touched upon Cypher clauses that are useful in building recommendations, such as
MATCH ,CREATE ,LOADCSV ,RETURN ,AS ,and WITH.

Then we moved onto installation and setting up Neo4j from the browser tool in the
Windows and Linux platforms.

Once the entire working environment was setup to build our recommendation engines, we
chose sample movie ratings data and implemented three types of collaborative filtering,
such as simple distance based, Euclidean similarity based, and Cosine similarity based
recommendations. In the next chapter, we will be exploring Mahout, a machine learning
library available on Hadoop, for building scalable recommender systems.



9
Building Scalable

Recommendation Engines with
Mahout

Imagine that you have just launched an online e-commerce website to sell clothes designed
by you and you are lucky enough to make your business kick-start well and make it a
successful venture. With more web traffic coming to your site, the most obvious choice is to
implement a recommendation engine on your website with features such as people who
visited something also visited something else, items similar to the current item, and so on.
Since your website is new and successful, you have implemented a recommendation engine
using popular tools, such as R and Python. The recommendation functionality is deployed
and works well, adding more value to the success of the business. Now with more business
coming in and with an increase in your user base, the most likely problem you might face
with the website is that your customers start complaining that your website is becoming
slow.

Upon analyzing the root cause, the obvious reason would be that the recommender features
that are added to the website are slowing down the site. This is bound to happen because of
the limitation of collaborative filtering algorithms used to cater for recommendations. Every
time we calculate the similarity between users, the entire user base will be loaded into the
memory and the similarity values would be calculated. This operation will be fast with a
small user base. Assume that with a large use base, such as one million users, the
collaborative filtering model will be thrown out of the memory exception. By increasing the
RAM capability, we might address this to some extent, but it still won't help us. Increasing
the RAM would be bad idea as it shoots up the infrastructure cost.
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The best way is to redesign the recommender engine on a distributed platform, such as
Hadoop. This is where Apache Mahout will come in handy as it is an open source machine
learning library built for the distributed platform, Apache Hadoop.

In this chapter, we will be covering the following sections:

Mahout general introduction
Setting up Mahout standalone and distributed mode
Core building blocks of Mahout
Building and evaluating recommendation engines with Mahout such as user-
based collaborative filtering, item-based collaborative filtering, SVD
recommendation engines, and ALS recommendation engines.

Mahout – a general introduction
Apache Mahout is an open source java library built on top of Apache Hadoop, which
provides large-scale machine learning algorithms. Though this library was originally
started with the MapReduce paradigm, the framework currently offers bindings to Apache
Spark, H2O, and Apache Flink. The latest version of Mahout supports collaborative filtering
recommendation engines, clustering, classification, dimensionality reduction, H2O, and
spark bindings.

The major features of Mahout 0.12.2 are as follows:

An extensible programming environment and framework for the building of
scalable algorithms
Support for Apache Spark, Apache Flink, and H2O algorithms
Samsara, a vector Math environment similar to the R programming language
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As mentioned in the previous section, though many things are possible with Mahout, we
will be limiting our discussion to building recommendation engines using Mahout. Mahout
provides support for both the standalone mode, where the recommendation model or
application can be deployed on a single server, and the distributed mode, where the
recommendation model can be deployed on a distributed platform.

Setting up Mahout
In this section, we shall look at setting up Mahout in standalone and distributed mode.

The standalone mode – using Mahout as a library
The standalone mode of Mahout usually involves two steps:

Adding Mahout libraries to the Java application that wants to use the Mahout
capabilities
Calling Mahout recommendation engine functions to build the recommender
application

Running an application that uses Mahout requires the following dependencies to be added
to the pom.xml file of your Java Maven project:
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The preceding dependencies will download all the required jars or libraries required to run
the Mahout functionalities, as shown in the following screenshot:

Another step is to go to the official Apache Mahout website and download the required
Mahout jar files, as shown here:

The latest Mahout library can be downloaded from the Apache Mahout official website at
http://mahout.apache.org/general/downloads.html.

The following image shows the screenshot of the above mentioned URL:

http://mahout.apache.org/general/downloads.html
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Download the tar file(tar files are just executable) instead of source files, as we just need the
jar files of Mahout to build recommendation engines:

After downloading the tar file, just extract all the files and add the required jars to the Java
application:
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With this minimal setup, let's build a very basic recommendation engine using Java Eclipse.

The minimal setup just requires the following steps:

Create a Java Maven project in Eclipse with the following attribute selection:1.

The following image shows the screenshot of creating a new Maven project
setup step 1:

In the following image, add the Artifact Id “recommendations“:
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A Maven project will be created with app.java as the default class. We can make2.
changes in this class to build our standalone recommendation engine:

Set Java runtime as 1.7 or higher, as shown in the next screenshot:3.
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Set the required Maven dependencies listed as mahout-mr, mahout-math, slf4j-4.
log4j, commons-math3, and guava; this will download the required jars for the
application to run, as shown in the following screenshot:
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These dependencies can be seen in the following screenshot:5.

Create a folder called data in the project and create a sample dataset, as shown in6.
the following screenshot:
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Now rename app.java to the UserbasedRecommender.java file. Write the7.
code in the java class to build the basic user-based recommender system:

package com.packtpub.mahout.recommenders;

import java.io.File;
import java.io.IOException;
import java.util.List;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import
org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood;
import
org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import
org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.UserBasedRecommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;

//class for generating User Based Recommendation
public class UserbasedRecommender
{
    public static void main( String[] args ) throws TasteException,
IOException
    {
    //creating data model
         DataModel model = new FileDataModel(new File("data/dataset.csv"));
    // creating pearson similarity between users
    UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
         //creating user neighborhood
           UserNeighborhood neighborhood = new
ThresholdUserNeighborhood(0.1,
similarity, model);
      // creating recommender model
            UserBasedRecommender recommender = new
GenericUserBasedRecommender(model, neighborhood, similarity);
        //generating 3 recommendations for user 2
    List<RecommendedItem> recommendations = recommender.recommend(2, 3);
    for (RecommendedItem recommendation : recommendations) {
      System.out.println(recommendation);
    }
    }
}



Building Scalable Recommendation Engines with Mahout

[ 293 ]

Running the preceding code will generate the recommendations for user 2, as
shown in the following screenshot:

Boom! We have created our first user-based recommendation engine. Don't worry about
what we have done or what's happening; everything will become clearer in the next few
sections. For now, just try to understand how the Mahout library can be used in the
standalone mode to build recommendation engines.

Setting Mahout for the distributed mode
We have seen how to use Mahout libraries in the standalone mode. In this section, let's see
how to setup Mahout on a distributed platform, such as HDFS. The following are the
requirements in order to set up Mahout:

Java 7 and higher
Apache Hadoop
Apache Mahout

Setting up Java 7 and installing Hadoop is out of the scope of the is book. We can find very
good resources online on how to set up Hadoop. Assuming Hadoop is already set up,
follow these steps to set up Mahout:

Download and extract the latest Mahout distribution from Apache Mahout website, as
explained earlier.
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Let's set up environment values:

Export JAVA_HOME = path/to/java7 or more
export MAHOUT_HOME = /home/softwares/ apache-mahout-distribution-0.12.2
export MAHOUT_LOCAL = true #for standalone mode
export PATH = $MAHOUT_HOME/bin
export CLASSPATH = $MAHOUT_HOME/lib:$CLASSPATH

Unset MAHOUT_LOCAL in order to run it on the Hadoop cluster.

Once the environment variables are set up, use the following commands in the command
line to run a recommendation engine on the distributed platform.

Using the following code, we are generating item-based recommendations using the log
likelihood similarity:

mahout recommenditembased -s SIMILARITY_LOGLIKELIHOOD -i mahout/data.txt -o
mahout/output1 --numRecommendations 25

[cloudera@quickstart ~]$ mahout recommenditembased -s
SIMILARITY_LOGLIKELIHOOD -i mahout/data.txt -o mahout/output1 --
numRecommendations 25
MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath.
Running on hadoop, using /usr/lib/hadoop/bin/hadoop and
HADOOP_CONF_DIR=/etc/hadoop/conf
MAHOUT-JOB: /usr/lib/mahout/mahout-examples-0.9-cdh5.4.0-job.jar
16/11/10 11:05:09 INFO common.AbstractJob: Command line arguments: {--
booleanData=[false], --endPhase=[2147483647], --input=[mahout/data.txt], --
maxPrefsInItemSimilarity=[500], --maxPrefsPerUser=[10], --
maxSimilaritiesPerItem=[100], --minPrefsPerUser=[1], --
numRecommendations=[25], --output=[mahout/output1], --
similarityClassname=[SIMILARITY_LOGLIKELIHOOD], --startPhase=[0], --
tempDir=[temp]}
16/11/10 11:05:09 INFO common.AbstractJob: Command line arguments: {--
booleanData=[false], --endPhase=[2147483647], --input=[mahout/data.txt], --
minPrefsPerUser=[1], --output=[temp/preparePreferenceMatrix], --
ratingShift=[0.0], --startPhase=[0], --tempDir=[temp]}
16/11/10 11:05:10 INFO Configuration.deprecation: mapred.input.dir is
deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
16/11/10 11:05:10 INFO Configuration.deprecation:
mapred.compress.map.output is deprecated. Instead, use
mapreduce.map.output.compress
16/11/10 11:05:10 INFO Configuration.deprecation: mapred.output.dir is
deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
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16/11/10 11:05:11 INFO client.RMProxy: Connecting to ResourceManager at
/0.0.0.0:8032
16/11/10 11:05:20 INFO input.FileInputFormat: Total input paths to process
: 1
16/11/10 11:05:22 INFO mapreduce.JobSubmitter: number of splits:1
16/11/10 11:05:24 INFO mapreduce.JobSubmitter: Submitting tokens for job:
job_1478802142793_0003
16/11/10 11:05:42 INFO impl.YarnClientImpl: Submitted application
application_1478802142793_0003
16/11/10 11:05:52 INFO mapreduce.Job: The url to track the job:
http://quickstart.cloudera:8088/proxy/application_1478802142793_0003/
16/11/10 11:05:52 INFO mapreduce.Job: Running job: job_1478802142793_0003
16/11/10 11:16:45 INFO mapreduce.Job: Job job_1478802142793_0011 running in
uber mode : false
16/11/10 11:16:45 INFO mapreduce.Job:  map 0% reduce 0%
16/11/10 11:16:58 INFO mapreduce.Job:  map 100% reduce 0%
16/11/10 11:17:19 INFO mapreduce.Job:  map 100% reduce 100%
16/11/10 11:17:20 INFO mapreduce.Job: Job job_1478802142793_0011 completed
successfully
16/11/10 11:17:21 INFO mapreduce.Job: Counters: 49
File System Counters
-------------------------------
-------------------------------
Bytes Written=28
16/11/10 11:17:21 INFO driver.MahoutDriver: Program took 732329 ms
(Minutes: 12.205483333333333)

The output is as follows:

Core building blocks of Mahout
Like any other recommendation engine framework, Mahout also provides a rich set of
components to build customized recommender systems that are enterprise-ready, scalable,
flexible, and that perform well.
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The key components of Mahout are as follows:

DataModel
Similarity: UserSimilarity, ItemSimilarity

User neighborhood
Recommender
Recommender evaluator

Components of a user-based collaborative
recommendation engine
In this section, we shall cover the components required for building a user-based
collaborative filtering system.
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The components of a user-based collaborative recommendation engine are as follows:

DataModel: A DataModel implementation allows us to store and provide access
to the user, item, and preference data required for computation. The DataModel
component allows us to pull data from the data source. Mahout provides
MySQLJDBCDataModel, which allows us to pull data from the database via
JDBC and MySQL. For the purpose of our example, we use the FileDataModel
interface to access data from files that Mahout exposes.

Some other DataModels exposed by Mahout are as follows:

HBaseDataModel:
(http://apache.github.io/mahout/0.10.1/docs/mahout-integratio
n/org/apache/mahout/cf/taste/impl/model/hbase/HBaseDataModel.

html)
GenericJDBCDataModel:
(http://apache.github.io/mahout/0.10.1/docs/mahout-integratio
n/org/apache/mahout/cf/taste/impl/model/jdbc/GenericJDBCDataM

odel.html)
PostgreSQLJDBCDataModel:
(http://apache.github.io/mahout/0.10.1/docs/mahout-integratio
n/org/apache/mahout/cf/taste/impl/model/jdbc/PostgreSQLJDBCDa

taModel.html)
MongoDBDataModel:
(http://apache.github.io/mahout/0.10.1/docs/mahout-integratio
n/org/apache/mahout/cf/taste/impl/model/mongodb/MongoDBDataMo

del.html)

Mahout expects the user data to be in the format of a userID, itemID,
preference triplet. The preference values can be either continuous or Boolean.
Mahout has support for both continuous and Boolean preference values.
Each input triplet, containing userID, itemID, and preference, which we
supply to the DataModel, will be represented in a memory-efficient
Preference object or a PreferenceArray object.

http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/hbase/HBaseDataModel.html
http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/hbase/HBaseDataModel.html
http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/hbase/HBaseDataModel.html
http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/jdbc/GenericJDBCDataModel.html
http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/jdbc/GenericJDBCDataModel.html
http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/jdbc/GenericJDBCDataModel.html
http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/jdbc/PostgreSQLJDBCDataModel.html
http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/jdbc/PostgreSQLJDBCDataModel.html
http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/jdbc/PostgreSQLJDBCDataModel.html
http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/mongodb/MongoDBDataModel.html
http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/mongodb/MongoDBDataModel.html
http://apache.github.io/mahout/0.10.1/docs/mahout-integration/org/apache/mahout/cf/taste/impl/model/mongodb/MongoDBDataModel.html
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UserSimilarity: The UserSimilarity interface calculates the similarity between
two users. The implementations of UserSimilarity return values in the range of
-1.0 to 1.0 usually, with 1.0 being the perfect similarity. In previous chapters, we
saw the multiple ways in which we can calculate the similarity between users,
such as Euclidean Distance, Pearson Coefficient, cosine distance, and so on. There
are many implementations of the UserSimilarity interface to calculate the User
Similarity, which are listed as follows:

CachingUserSimilarity
CityBlockSimilarity
EuclideanDistanceSimilarity
GenericUserSimilarity
LogLikelihoodSimilarity
PearsonCorrelationSimilarity
SpearmanCorrelationSimilarity
TanimotoCoefficientSimilarity
UncenteredCosineSimilarity

ItemSimilarity: Similar to UserSimilarity, Mahout also provides the
ItemSimilarity interface, analogous to UserSimilarity, which can be used to
calculate the similarity between items. The implementations of UserSimilarity
return values in the range of -1.0 to 1.0 usually, with 1.0 being the perfect
similarity:

AbstractItemSimilarity
AbstractJDBCItemSimilarity
CachingItemSimilarity
CityBlockSimilarity
EuclideanDistanceSimilarity
FileItemSimilarity
GenericItemSimilarity
LogLikelihoodSimilarity
MySQLJDBCInMemoryItemSimilarity
MySQLJDBCItemSimilarity
PearsonCorrelationSimilarity
SQL92JDBCInMemoryItemSimilarity
SQL92JDBCItemSimilarity
TanimotoCoefficientSimilarity
UncenteredCosineSimilarity
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UserNeighborhood: In a user-based recommender, recommendations generated
for the active user are produced by finding a neighborhood of similar users.
UserNeighborhood usually refers to a way to determine the neighborhood for a
given active user, for example, the ten nearest neighbors to take into account
while generating recommendations.

These neighborhood classes implement the UserSimilarity interface for their
operation.
The following are the implementations of the neighborhood interface: 

CachingUserNeighborhood
NearestNUserNeighborhood
ThresholdUserNeighborhood

Recommender: A recommender is the core abstraction in Mahout. Given the
DataModel object as the input, it produces recommendations for items to users.
The implementations of the recommender interface are as follows:

AbstractRecommender
CachingRecommender
GenericBooleanPrefItemBasedRecommender
GenericBooleanPrefUserBasedRecommender
GenericItemBasedRecommender
GenericUserBasedRecommender
ItemAverageRecommender
ItemUserAverageRecommender
RandomRecommender
RecommenderWrapper
SVDRecommender
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Building recommendation engines using Mahout
Now that we have covered the core building blocks of the Mahout recommendation engine
framework, let's start building recommendations. In this section, we will look at a series of
different recommendation engines implemented using the standalone mode. The
recommendation engine capabilities are using implementations of the
org.apache.mahout.cf.taste.impl package.

The recommendation engines we see in this section are as follows:

User-based collaborative filtering
Item-based collaborative filtering
SVD recommenders

Dataset description
Before we get into recommender implementations, let's look at the dataset we use in this
section. For this section, we use the restaurant and consumer data dataset available from the
UCI machine learning dataset repository from the following URL:

https://archive.ics.uci.edu/ml/datasets/Restaurant+%26+consumer+data

This dataset can be used to build collaborative filtering applications using consumer
preference information. The dataset, the file downloaded from the previous link, contains
nine files listed in the following figure. Of all the files in this exercise, we use the
rating_final.csv file, which contains attributes such as userID, placeID, rating,
food_rating, and service_rating. But for our use cases, we only use userID, placeID, and
rating. We can think of the data as a preference value given to Place by a given user.

We will have to make use of the previously created project in the setup
session.
Add the input ratings_final.csv file to the data folder to the current
project structure.

So first, let's preprocess the original raw data into the required format of the userID,
placeID, and rating triplet. Here's the raw dataset used for this exercise:

https://archive.ics.uci.edu/ml/datasets/Restaurant+%26+consumer+data
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The following program will prepare the required triplet dataset, implemented as follows:

Read each line from the ratings_final.csv file
Extract the first three columns
Write the extracted columns from the previous step to a new recoDataset.csv
file

The following java program implements the previously explained steps:

package com.packtpub.mahout.recommenders;

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import au.com.bytecode.opencsv.CSVReader;
import au.com.bytecode.opencsv.CSVWriter;

public class Preprocessdata  {

public static void main(String[] args) throws IOException {
String fileName = "data/rating_final.csv";
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String csv = "data/recoDataset.csv";
CSVReader csvReader = new CSVReader(new FileReader(fileName));
String[] row = null;
List<String[]> data = new ArrayList<String[]>();
CSVWriter writer = new CSVWriter(new FileWriter(csv),
CSVWriter.DEFAULT_SEPARATOR,
CSVWriter.NO_QUOTE_CHARACTER);
while((row = csvReader.readNext()) != null) {
if(!row[0].contains("userID")){
data.add(new String[] {row[0].substring(1), row[1],row[2]});
}
}
writer.writeAll(data);
writer.close();
csvReader.close();
}

}

Upon running the preceding java program, the final dataset that we use to build
recommendation engines will be created under the data folder as the recoDataset.csv
file. The following is a sample dataset:
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Now that we have preprocessed the required data, let's start building our recommendation
engines with the Mahout framework.

User-based collaborative filtering
Just for the sake of a refresher: the user-based recommender system generates
recommendations based on the UserSimilarity calculation between users and then uses
UserNeighborhood to choose top-N users and then generate recommendations.

Let's first execute the following code and then we shall look at the code line by line. We will
use the Euclidean Distance similarity and Nearest Neighborhood methods to generate
recommendations:

package com.packtpub.mahout.recommenders;

import java.io.File;
import java.io.IOException;
import java.util.List;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import
org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import
org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import
org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.UserBasedRecommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;

//class for generating User Based Recommendation
public class UserbasedRecommendations
{
    public static void main( String[] args ) throws TasteException,
IOException
    {
    //creating data model
    DataModel model = new FileDataModel(new File("data/recoDataset.csv"));
    // creating Euclidean distance similarity between users
    UserSimilarity similarity = new EuclideanDistanceSimilarity(model);
    //creating user neighborhood
    UserNeighborhood neighborhood = new NearestNUserNeighborhood(10,
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similarity, model);
    // creating recommender model
    UserBasedRecommender recommender = new
GenericUserBasedRecommender(model, neighborhood, similarity);
    //generating 3 recommendations for user 1068
    List<RecommendedItem> recommendations = recommender.recommend(1068, 3);
    for (RecommendedItem recommendation : recommendations) {
      System.out.println(recommendation);
    }
    }
}

Running this program generates recommendations shown in the following figures. We are
generating the top three user-based item recommendations to UserId - 1068:

From the result, we can conclude that for UserId - 1068, the top three recommended
places along with similarity values are as follows:

Let's now look at the code line by line; just recall the core building blocks of the Mahout
recommendations section. We need DataModel, Similarity calculation, UserNeighborhood,
recommender, and generating recommendations. This order is used in the previous code:

The code in the UserbasedRecommender.main method creates a data source1.
from the data/recoDataset.csv CSV file using
org.apache.mahout.cf.taste.impl.model.file.FileDataModel.FileDa

taModel class. This class constructor gets the Java.io.File instance
containing the preferences data and creates the DataModel class instance model:

        //creating data model
        DataModel model = new FileDataModel(new
          File("data/recoDataset.csv"));
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In this step, we create the UserSimilarity instance: the similarity calculation2.
between all users using
org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSim

ilarity class, which takes the FileDataModel instance created in the
previous step as the constructor parameter:

        // creating Euclidean distance similarity between users
        UserSimilarity similarity = new
          EuclideanDistanceSimilarity(model);

In this step, we create the UserNeighborhood instance: the neighborhood using3.
org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighb

orhood class, and it takes three parameters: the number of nearest neighbors to
be considered, the UserSimilarity instance-similarity, the DataModel instance
which is the model created in the previous steps as inputs:

        //creating user neighborhood
        UserNeighborhood neighborhood = new
          NearestNUserNeighborhood(10, similarity, model);

The next step is to generate a recommender model. This is achieved using the4.
org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRec

ommender class instance. A GenericUserBasedRecommender instance-the
recommender is created by passing the DataModel instance model, the
UserNeighborhood instance neighborhood, the UserSimilarity instance similarity
as inputs to the constructer while creating the recommender object.

        // creating recommender model
        UserBasedRecommender recommender = new
          GenericUserBasedRecommender(model, neighborhood, similarity);

Kudos! We have created our user-based recommender system using the5.
Euclidean Distance similarity and the NearestNNeighborhhood method to
create a recommender model. Now the next step would be to generate
recommendations; for this, we call the recommend() method available in the
recommender object, which takes UserId for which the recommendations and
the number of recommendations have to be generated:

        //generating 3 recommendations for user 1068
        List<RecommendedItem> recommendations =
          recommender.recommend(1068, 3);
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This step has generated three item recommendations to the UserId 1068 along with the
strength of the preference.

In our case, we generated the following recommendations:

item:132613, value:1.2205102
item:132667, value:1.0
item:132584, value:0.98069793

Item-based collaborative filtering
Item-based recommenders recommend similar items to users by considering the similarity
between items instead of the similarity of users, as shown in the previous section.

The following is the given java program to build item-based collaborative filtering. We have
used LogLikelihoodSimilarity to calculate ItemSimilarity, and then we used the
GenericItemBasedRecommender class to recommend items to users. In addition, we can
see how to check similar items for a given item using the mostSimilarItems method
present in GenericItemBasedRecommender:

package com.packpub.mahout.recommendationengines;

import java.io.File;
import java.io.IOException;
import java.util.List;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import
org.apache.mahout.cf.taste.impl.recommender.GenericItemBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.LogLikelihoodSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.similarity.ItemSimilarity;

public class ItembasedRecommendations {

public static void main(String[] args) throws TasteException, IOException {
DataModel model = new FileDataModel(new File("data/recoDataset.csv"));
    ItemSimilarity similarity = new LogLikelihoodSimilarity(model);
    GenericItemBasedRecommender recommender = new
GenericItemBasedRecommender(model, similarity);
    System.out.println("*********Recommend Items to Users********");
    List<RecommendedItem> recommendations = recommender.recommend(1068, 3);
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    for (RecommendedItem recommendation : recommendations) {
      System.out.println(recommendation);
    }
     System.out.println("*********Most Similar Items********");
    List<RecommendedItem> similarItems =
recommender.mostSimilarItems(135104, 3);
    for (RecommendedItem similarItem : similarItems) {
      System.out.println(similarItem);
    }
}

}

Running the previous program will generate three items most similar to the input item, in
our case, for the placeID 135104, the most similar placeID attributes along with the strength
of the similarity is shown in the following screenshot:

Let's look at each step of the preceding program in order to understand what's happening
in the preceding implementation:

The first step, like in the previous section, is to create the DataModel instance1.
using the
org.apache.mahout.cf.taste.impl.model.file.FileDataModel class:

        //we create DataModel instance - model
        DataModel model = new FileDataModel(new
          File("data/recoDataset.csv"));

In this step, we create the ItemSimilarity instance, the similarity calculation2.
between all users using the
org.apache.mahout.cf.taste.impl.similarity.LogLikelihoodSimilar

ity class, which takes the FileDataModel instance created in the previous step
as the constructor parameter:

        // creating LogLikelihood distance similarity between users
        ItemSimilarity similarity = new LogLikelihoodSimilarity
          (model);
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The next step is to generate a recommender model. This is achieved using the3.
org.apache.mahout.cf.taste.impl.recommender.GenericItemBasedRec

ommender class instance. A GenericItemBasedRecommender instance
recommender is created passing the DataModel instance which is the model
ItemSimilarity instance-similarity as inputs to the constructer while creating the
recommender object.

        // creating recommender model
        GenericItemBasedRecommender recommender = new
          GenericItemBasedRecommender(model, similarity);

The choice of the similarity metric is left to you; it is set as per your
requirement.

Kudos! We have created our item-based recommender system using the4.
LogLikelihood similarity to create a recommender model. Now the next step
would be to generate recommendations, and for this, we call the recommend()
method available in the recommender object, which takes UserId for which the
recommendations and the number of recommendations have to be generated:

        //generating 3 recommendations for user 1068
        List<RecommendedItem> recommendations =
          recommender.recommend(1068, 3);

This step has generated three item recommendations to the UserID 1068
along with the strength of the preference.

In our case, we generated the following recommendations:

        item:132613, value:1.2205102
        item:132667, value:1.0
        item:132584, value:0.98069793

Imagine that we want to see items similar to a particular item; recommender5.
interfaces, such as the GenericItemBasedRecommender class in our example,
provide the mostSimilarItems() method, which takes UserId, the number of
items to be displayed as inputs, and extracts similarItems for a given item:

        List<RecommendedItem> similarItems =
          recommender.mostSimilarItems(135104, 3);
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In our example, the three places most similar to PlaceId 135104 are shown as follows:

item:132667, value:0.96383345
item:132732, value:0.9602005
item:132733, value:0.9543598

In the following section, let's evaluate the recommendations we have created so far.

Evaluating collaborative filtering
We have seen how to build recommendations using collaborative filtering approaches. But
the key thing is to build efficient recommendations. Evaluating the accuracy of the
recommender models – what we built – is a very crucial step in building recommendation
engines. In this section, we will look at how to evaluate both user-based recommenders and
item-based recommenders.

Mahout provides components that enable us to evaluate the accuracy of the
recommendation models we have built so far. We can evaluate how closely our
recommendation engine estimates the preferences against the actual preference values. We
can instruct Mahout to use part of the original training data to set aside and use this test
dataset in order to calculate the accuracy of the model.

We can use any of the following listed recommender evaluators provided by Mahout as per
our requirement:
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Recommender evaluation using Mahout usually requires two steps:

Creating an instance of the
org.apache.mahout.cf.taste.impl.eval.RMSRecommenderEvaluator

class available from the preceding list, which will create the accuracy score
Implementing the inner interface for
org.apache.mahout.cf.taste.eval.RecommenderBuilder so as to create
the recommender that the RecommenderEvaluator class instance from the
previous step can use to produce the accuracy score

The listing shows the java implementation for user-based recommender model evaluation.
For this exercise, we have used the root mean squared error evaluation technique.

Evaluating user-based recommenders
In this section, we shall see the code for evaluating the user-based recommendations we
built in the previous section:

package com.packtpub.mahout.recommenders;

import java.io.File;
import java.io.IOException;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.eval.RecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.eval.RMSRecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import
org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import
org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import
org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;

public class EvaluateUBCFRecommender {

public static void main(String[] args) throws IOException, TasteException {

DataModel model = new FileDataModel(new File("data/recoDataset.csv"));
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RecommenderEvaluator evaluator = new RMSRecommenderEvaluator();
RecommenderBuilder builder = new RecommenderBuilder() {
public Recommender buildRecommender(DataModel model)
throws TasteException {
UserSimilarity similarity = new EuclideanDistanceSimilarity(model);
UserNeighborhood neighborhood =
new NearestNUserNeighborhood (10, similarity, model);
return
new GenericUserBasedRecommender (model, neighborhood, similarity);
}
};
double score = evaluator.evaluate(
builder, null, model, 0.8, 1.0);
System.out.println(score);
}

}

Executing the preceding program will give us the model accuracy: 0.692216091226208.

Evaluating item-based recommenders
Below code snippet will be used in evaluating the item-based recommendations:

package com.packtpub.mahout.recommenders;

import java.io.File;
import java.io.IOException;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.eval.RecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.eval.RMSRecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import
org.apache.mahout.cf.taste.impl.recommender.GenericItemBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.LogLikelihoodSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.ItemSimilarity;

public class EvaluateIBCFRecommender {

public static void main(String[] args) throws IOException, TasteException {

DataModel model = new FileDataModel(new File("data/recoDataset.csv"));
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//RMS Recommender Evaluator
RecommenderEvaluator evaluator = new RMSRecommenderEvaluator();
RecommenderBuilder builder = new RecommenderBuilder() {
public Recommender buildRecommender(DataModel model)
throws TasteException {
ItemSimilarity similarity = new LogLikelihoodSimilarity(model);
return
new GenericItemBasedRecommender(model, similarity);
}
};
double score = evaluator.evaluate(builder, null, model, 0.7, 1.0);
System.out.println(score);

}

}

Executing the previous program will give us the model accuracy: 0.6041129199039021.

Now let's look at this evaluation implementation step by step:

The first step is to create a DataModel instance model using the1.
org.apache.mahout.cf.taste.impl.model.file.FileDataModel class:

        DataModel model = new FileDataModel(new
          File("data/recoDataset.csv"));

In this step, we create the2.
org.apache.mahout.cf.taste.impl.eval.RMSRecommenderEvaluator

instance evaluator, which will calculate the recommendation engine accuracy:

        // Recommendation engine model evaluator engine
        RecommenderEvaluator evaluator = new RMSRecommenderEvaluator();

In this step, we implement the3.
org.apache.mahout.cf.taste.eval.RecommenderBuilder interface to
create the recommender of our choice.

Let's use the same recommender models we used for both user-based and
item-based recommenders in the previous section:

        // User based recommenders
        public Recommender buildRecommender(DataModel model)
        throws TasteException {
        UserSimilarity similarity = new
          EuclideanDistanceSimilarity(model);
        UserNeighborhood neighborhood =
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        new NearestNUserNeighborhood (2, similarity, model);
        return
        new GenericUserBasedRecommender (model, neighborhood,
          similarity);
        }
        };

        //Item based recommenders
        public Recommender buildRecommender(DataModel model)
        throws TasteException {
        ItemSimilarity similarity = new LogLikelihoodSimilarity(model);
        return
        new GenericItemBasedRecommender(model, similarity);
        }
        };

Now we are ready to calculate the recommendation accuracy. For this, we use the4.
evaluate() method from the evaluator instance. The evaluate() method does
not accept a recommender instance–which we created in user-based/item-based
recommenders directly–but it accepts RecommenderBuilder, created in step 3 of
our examples/index, which can build the recommender to test the accuracy on
top of a given DataModel.

The evaluate() method takes four parameters: the recommender builder
created in step 3, the DataModel object created in step 1, the DataModel
builder object that we don't need for our example, the training percentage–in
our case, we used 0.7 % as the training dataset and 0.3 as the test dataset–,
evaluation percentage, the percentage of users to be used in evaluation.

The evaluate() method returns the accuracy score of the model, which is
how well the recommender-predicted preferences match the real values.
Lower values indicate a better match, with 0 being the perfect match:

        //generating 3 recommendations for user 1068
        double score = evaluator.evaluate(builder, null, model, 0.7,
          1.0);
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SVD recommenders
Similar to the item-based and user-based recommender systems explained earlier, we can
also use model-based recommender implementations in Mahout, such as SVDRecommender,
which uses matrix factorization methods to generate recommendations.

The steps are similar to previous implementations. Two important steps that need to be
understood here are as follows:

The
org.apache.mahout.cf.taste.impl.recommender.svd.ALSWRFactorizer

class, which factorizes the user rating matrix using Alternating-Least-Squares with
Weighted-λ-Regularization. The ALSWRFactorizer class constructor takes
parameters such as DataModel, the number of features, the regularization
parameter, and the number of iterations as inputs. This ALSWRFactorizer class
instance is passed as the input parameter to the recommender object: the
SVDRecommender class.
The
org.apache.mahout.cf.taste.impl.recommender.svd.SVDRecommender

class generates the recommendation model by taking DataModel and
ALSWRFactorizer objects.

The rest of the other steps are very similar to what we saw in the previous examples:

The following code snippet shows how to build SVD recommender systems:

package com.packpub.mahout.recommendationengines;

import java.io.File;
import java.io.IOException;
import java.util.List;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.recommender.svd.ALSWRFactorizer;
import org.apache.mahout.cf.taste.impl.recommender.svd.SVDRecommender;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;

public class UserBasedSVDRecommender {

public static void main(String[] args) throws TasteException, IOException {
//MF recommender model
    DataModel model = new FileDataModel(new File("data/dataset.csv"));
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    ALSWRFactorizer factorizer = new ALSWRFactorizer(model, 50, 0.065, 15);
    SVDRecommender recommender = new SVDRecommender(model, factorizer);
    List<RecommendedItem> recommendations = recommender.recommend(2, 3);
    for (RecommendedItem recommendation : recommendations) {
      System.out.println(recommendation);
    }

}

}

Distributed recommendations using Mahout
Up to now, we have seen how to build recommendation engines in the standalone mode. In
most cases, the standalone implementations are very handy and they work quite efficiently
in handling a million records provided we supply the dataset format, such as the userID,
itemID, and preference triplet.

When the size of the data increases, the standalone mode might not be able to address the
requirements. We need to look for ways to handle the enormous amount of data and be able
to process the data to build recommendations. One approach is to port our standalone
solution to the distributed mode, an example of which is Hadoop platforms.

The porting of the recommender solution to Hadoop is not straight forward, as the data will
be distributed across the nodes. The memory-based models, such as neighbourhood
recommenders, or model-based recommenders, such as Alternating Least Squares, requires
the entire data to be available while generating the model, which will not be available on a
distributed platform. Hence we need an entirely new design to build recommender
systems.

Luckily, Mahout has removed the headaches in designing recommender implementations
that can be distributed. These Mahout-distributed recommendation engine
implementations are provided as jobs that internally run a series of map-reduce phases.

For example, Mahout-distributed recommendations using Alternating Least Squares
consists of two jobs:

A parallel matrix factorization job
A recommendation job
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The matrix factorization job takes the user-item-rating file as the input and creates the user
latent matrix that is a user feature matrix and an item feature matrix.

The recommendation job uses the latent feature matrices created using the matrix
factorization job and computes Top-N recommendations.

The two jobs are executed sequentially, the input data is read from HDFS, and final
recommendations are written to HDFS.

In this section, we shall look at how to generate recommendations using the item-based
recommendation engine and Alternating Least Squares methods using Hadoop. Let's begin.

ALS recommendation on Hadoop
To build the recommendation using ALS implementations, the following are the steps:

Load data to the Hadoop platform. The ALS implementation of Mahout expects1.
the input to be a triplet: userID, itemID, and preference value (explicit
rating/implicit rating).
Execute the ALS recommendation engine implementation job; this job will create2.
user and item latent matrices by taking the input dataset from step 1.
Execute the recommender job that takes the user-item latent feature matrices3.
created in step 2 and generate Top-N recommendations.

Let's execute all the steps one by one.

For the following exercise, we are using CDH 5 and Centos 6.
This is assuming JAVA_HOME is set and Mahout is installed properly.

Load data to the Hadoop platform as follows:1.

    #create a directory to store the input data using mkdir command
    [cloudera@quickstart ~]$ hadoop fs -mkdir mahout
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Let's check whether we have created the directory properly using the ls
command:

    [cloudera@quickstart ~]$ hadoop fs -ls
    Found 1 items
    drwxr-xr-x   - cloudera cloudera          0 2016-11-14 18:31 mahout

Now let's load data to the HDFS using the copyFromLocal command:

    hadoop fs -copyFromLocal /home/cloudera/datasets/u.data mahout

The input data is the MovieLens dataset that consists of one million rating
data.

Let's verify that the data is loaded properly using the ls command:

    [cloudera@quickstart ~]$ hadoop fs -ls mahout
    Found 1 items
    -rw-r--r--   1 cloudera cloudera    1979173 2016-11-14 18:32
mahout/u.data

Now that we have seen that the data is loaded properly, let's look at the first
few records of the input data:
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Create User and Item latent matrices. To create the latent feature matrices, we2.
need to run the following commands from the command line:

    $MAHOUT_HOME\bin\mahout parallelALS \
        --input mahout \
        --output output \
        --lambda 0.1 \
        --implicitFeedback false \
        --numFeatures 10 \
        --numIterations 1  \
        --tempDir tmp

Let's look at each of the command parameters:

$MAHOUT_HOME\bin\mahout: This is the executable file that runs
the underlying matrix factorization job.
parallelALS: This is the name of the algorithm to be applied on the
input dataset. The parallelALS command invokes the underlying
ParallelALSFactorizationJob class object, which is a map-
reduce implementation of the factorization algorithms described in
Large-scale Parallel Collaborative Filtering for the Netflix Prize.
–input: This is the HDFS input path of the input ratings data.
–output: This is the path where the output latent matrices for the user
and item will be generated.
–lambda: This is the regularization parameter given in order to avoid
overfitting.
–alpha: This is the confidence parameter used for implicit feedback
only.
–implicitFeatures: This is the Boolean value to state whether the
preference values are true or false. In our case, they are false.
–numIterations: This is the total number of times the model gets
recomputed by applying the learnings from the previous model to the
new model.
–tempDir: This is the path to the temporary directory where the
intermediate results are written.
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On executing the command we saw, three datasets are created in the output
directory:

U: This contains the user latent feature matrix
M: The contains the item latent feature matrix
userRatings: All the outputs are of a sequence file format.

Generate recommendations for all the users. This step takes the output results3.
stored to HDFS from the previous step as the input, generates recommendations,
and writes the final recommendations to the recommendations output directory on
HDFS.

The following command will invoke the
org.apache.mahout.cf.taste.hadoop.als.RecommenderJob

recommender job, which internally calls an
org.apache.mahout.cf.taste.hadoop.als.PredictionMapper class to
generate recommendations:

    $MAHOUT_HOME\bin\mahout recommendfactorized \
           --input output/userRatings/  \
           --userFeatures output/U/ \
           --itemFeatures output/M/ \
           --numRecommendations 15 \
           --output recommendations/topNrecommendations \
           --maxRating 5

Let's look at each of the parameters in detail:

— input: This is the HDFS path containing the list of the userID file to
be used to generate recommendations in the sequence file format. In
our example, the output/userRatings directory contains all the userID to
be used to generate recommendations in the sequence file format; this
file is the output of step 2.
–userFeatures: This is the HDFS path containing user latent features
generated as the output in step 2.
–itemFeatures: This is the HDFS path containing item latent features
generated as the output in step 2.
–numRecommendations: The number of recommendations to be
generated per user.
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–output recommendations: This is the HDFS path where the final
recommendations have to be generated.
–maxRating: This is the maximum rating that the generated
recommendations should contain.

Upon running the previous commands in the command line, recommendations are
generated into the recommendations folder on HDFS, as follows:
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In the earlier result, we can see the first ten user recommendations in order. Each user
vector contains itemID and the rating that the algorithm has predicted. While serving
recommendations, we can just send recommendations as is.

Now you may get a question like this: what if I want to generate recommendations to
specific users? Mahout supports such scenarios as well. Remember the input parameter in
step 3? Just provide the HDFS path containing the userID which we need for
recommendations. But make sure that the input path containing the userID are in a
sequence file format.

The architecture for a scalable system
Taking the recommendation engine system to production is the same as any other system.
The previous figure shows a very simple recommendation engine deployed on a
production system:

The production system is Centos 6 with Java 8 and the Apache Tomcat server
installed on the system. CDH 5 and the Mahout 0.12 version is also installed on it
so that the recommender jobs we have built so far can be deployed:
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The Java code we have written so far can be made as jar files and deployed on the
production system. Schedule all the jobs at a regular interval as per our
requirements.
At a defined scheduled time, the recommender jobs start executing and the data
is pulled from data sources, computes recommendation models, and generates
recommendations.
The data for the recommendation module will be read and written back to the
HDFS file system.
The frontend applications will read the final outputs from HDFS.

Summary
In this chapter, we saw how to build recommendations using Apache Mahout. We looked
at how we can leverage Mahout for both the standalone and the distributed mode. We have
written Java code for user-based, item-based, and SVD-based recommendation engines in
the standalone mode and Alternating Least Squares recommendations in the distributed
mode. We also saw how we can evaluate the recommendation engine models. In the final
section, we explored a very basic system of how to take Mahout to production.

In the final chapter, we shall cover the future of recommendation engines, where the
recommendation engines are heading, and the promising use cases to lookout for.
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What Next - The Future of
Recommendation Engines

Thank you for taking this wonderful journey with me so far. I hope you have got a fair idea
of how to build recommendation engines using various technologies such as R, Python,
Mahout, Spark, and Neo4j. We have covered recommendation engines such as
neighborhood recommendations, model-based content recommendations, and context-
aware, scalable, real-time, graph recommendations.

I would like to touch upon two things in the concluding chapter:

Technological shift and motivational shift driving the future of recommendation
engines
Popular methodologies for improving the quality of recommendation engines

In the Future of recommendation engines section, I will summarize one of my talks about
recommendation engines in a tech conference held in 2015. In the good implementations
section, I will touch upon important methodologies to be followed while building
recommendation engines.

With business organizations investing a lot in recommendation engines, researchers are
freely exploring different aspects of recommendation engines and applying very advanced
methods to improve their performance. It is very important for us to know the future of
recommendation engines and the direction in which the research is moving so that we can
apply these new techniques in our day-to-day work while building recommendation
engines.
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In the future of recommendation engines section, we will touch upon the technological and
motivational shifts that are driving the future of recommendations. In the following section,
we will learn about a few popular methodologies that every data scientist should know
while building recommendation engines.

Future of recommendation engines
As we have reached the end of the book, I feel it is time to talk about the future of
recommendation engines. Let us first have a small recap of what we have covered so far in
the book:

Recommendation engines in detail
Data-mining techniques used in recommendation engines
Collaborative filtering: similarity-based recommendations
Model-based recommendations using R and Python
Content-based recommender systems using R and Python
Context-aware recommender systems using R and Python
Scalable real-time recommender systems using Scala
Scalable recommendation engines using Mahout
Graph-based recommendation engines using Neo4j

Phases of recommendation engines
As explained in Chapter 1, Recommendation Engines an Introduction, if we look closely at the
evolution of recommender systems, the recommendation engines have evolved in multiple
directions; it is important to understand the directions in which recommendation engines
are evolving to cope with futuristic situations.

We are heading into the third phase of evolution of recommendation engines, which are as
follows:

Phase 1: General recommendation engines
Phase 2: Personalized recommendation engines
Phase 3: Futuristic recommendation engines
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Predominantly, recommendation engines focus on consumers. Consumer is the central
objective for recommendation engines. Let's understand how these systems are evolving
with respect to users. With the increase in the usage of the Internet, everyday decisions,
ranging from which products to buy to which movies to watch to which restaurants to try,
have led to more and more trust being put in the hands of these recommendation systems.
These recommendation systems are changing the way we make up our minds, guiding us
through a new digital reality, the evolution of which is bringing us closer to exactly we
want, even if we ourselves don't know it yet.

Phase 1 – general recommendation engines
These recommendation engines are the earlier generation of recommendation engines.
Collaborative filtering, user-based recommenders, and item-based recommenders fall into
this phase of general recommendations.

As explained in Chapter 3, Recommendation Engines Explained, the collaborative filtering
recommenders have become very popular, and are also very effective at recommending
things to users. The following figure is symbolic of general recommendation engines:
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Phase 2 – personalized recommender systems
As the information explosion started and more and more people started using the Web,
leaving a good amount of digital footprints, such as search patterns, clicks, and browsing
more and more, companies started looking into what, in the items or products, the user is
interested in and which features of the items are making the user look for it. Companies
started realizing that each person is unique and has unique tastes, and then they started
catering to their need for personalized things; these are also called content-based
recommender systems. In Chapter 3, Recommendation Engines Explained, we learned about
content-based recommenders in detail. The following figure shows how personalized
recommendations are given to the customer:

As systems moved to personalized systems–known as content-based recommender
systems–more advanced techniques using machine learning, big data, and the cloud started
calculating items more suited to the users. Methods such as matrix factorizations, Singular
Value Decomposition (SVD), and regression analysis started to be employed as technology
evolved.

The aforementioned two methods have their own limitations to new data (the cold-start
problem) and in narrowing down the information. To solve these problems, the ensemble or
hybrid recommender models evolved, which are formed by combining one or more
algorithms to achieve more accuracy.
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From here, we are moving into deep neural nets, a very advanced level of neural-network
algorithms stacked together in multiple layers, where feature engineering is being
automated. One of the major difficult tasks in machine-learning models is to accurately
engineer the features; so research is being done to apply deep-learning methods to
recommendation engines.

For more information, refer to the following websites:

h t t p ://b e n a n n e . g i t h u b . i o /2014/08/05/s p o t i f y - c n n s . h t m l

h t t p ://m a c h i n e l e a r n i n g . w u s t l . e d u /m l p a p e r s /p a p e r _ f i l e s
/N I P S 2013_ 5004. p d f

h t t p s ://w w w . q u o r a . c o m /H a s - t h e r e - b e e n - a n y - w o r k - o n - u s i n
g - d e e p - l e a r n i n g - f o r - r e c o m m e n d a t i o n - e n g i n e s

An example of implementation of deep learning in recommendation engines can be found
as follows:

An S-curve for recommender systems would push the current state of the
art nearly to the top of its bent.
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Phase 3 – futuristic recommender systems
At this point, let me pause and take you to the futuristic view of recommender systems: we
are moving into something called ubiquitous recommender systems. Ubiquitous
recommenders start recommending things in real time based on your location, time, mood,
sleep cycle, and energy output. The following figure depicts a futuristic system:

This means that where ever you go and whatever you do, the recommender systems will be
watching you and will be recommending things on the go. Google, Facebook, and other
major IT giants have pioneered these recommender systems and have nearly perfected
them and started delivering these ubiquitous recommender systems. Google Allo from
Google is one example of a ubiquitous recommender system:
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Till now, we were getting recommendations based on some bucketing, users or items, but
the future will be more tailor-made to users based on the digital footprints available. Google
Allo is one of the best available apps, which continuously monitors you, and based on your
activity on the app, it will definitely be recommending things on the go in the future. Google
Allo is chat environment, which works as virtual assistant, assisting us with all our queries,
which in turn will learn our preferences and interests over time and make smart
suggestions on the go.

This is how real-time context-aware recommender systems also fall into this type of
futuristic recommenders:

We are almost in a digitized world, where we are relying on the Internet for almost
everything, be it related to banking, healthcare, driving cars, restaurants, travelling,
personal fitness, and so on. In the near future, all companies would share information about
users among themselves to create 360-degree user profiles using all the aforementioned
digital footprints, and personalized, real-time, context-aware recommendations will be
catered to with great accuracy. In the preceding figure, we can see how we are leaving our
digital footprints and how it is possible for companies to share data with one another to
generate recommendations tailored at individual levels.
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There have been shifts in motivation, which are driving the evolution of recommendation
engines toward futuristic systems. A few of them are as follows:

End of search
Leaving the Web behind
Emerging from the Web

Since the advent of recommendation engines, the primary focus is on customers, and even
for the futuristic recommender systems, this remains the same, but the difference comes in
with the increase in the number of digital footprints users are leaving. This large amount of
usage of digital systems is leading customers to ask for more sophisticated solutions to
make the access to information more personal than generic.

End of search
We are moving away from traditional ways of searching and web integration toward
information and content discovery. Future search engines will be using a convergence
theory of web search/personalization/ads, which will allow users to move into content
discovery though recommendations rather than searches. The following figure shows
convergence theory:
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With more and more people relying on the Internet or search engines to find suitable
products online, organizations are working together by sharing the data from users' online
activity from different platforms, with the objective of minimizing the number of searches
to find relevant information or content by generating accurate personalized
recommendations based on recent activities.

I call this paradigm the convergence theory, where traditional search, ads, and
recommendation engines are combined together to bring relevant content discovery to
users at a personalized level by bringing an end to searching on the Internet.

For example, the Google search engine and YouTube have already started working toward
this convergence theory to help users find relevant information on products and perform
content discovery without searching explicitly.

Recently, I was looking for the Raspberry Pi 3, the latest in the series of credit-card-sized
single-board computers, on an e-commerce site, to buy it for my personal work. A few days
later, when I was searching for the specifications of the Raspberry Pi on Google Search, I
noticed that Google had displayed ads related to the Raspberry Pi. Though alarming, it was
more convenient for me because it had eliminated the task of going to the e-commerce site
exclusively for purchasing. The search results are displayed in the following screenshot:

We can take YouTube as an example. The suggestions on YouTube are becoming more and
more relevant, so much so that the number of times we search for required information is
getting less and less; we follow the suggestions that are recommended to get more
information on related topics.

In the future, we will see more and more applications making use of this convergence
theory to minimize the number of searches by users, and also of recommendation engines
for personalized content discovery.
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Leaving the Web behind
Search engines and recommender systems are employed to enrich social experience as well
as user experience by reaching out to the customers. More futuristic systems will
continuously listen to their customers online and address their grievances at the earliest
opportunity, even when their displeasure is being expressed on social sites. The following
figure shows the motivation for futuristic recommendations – leaving the Web behind:

As an example, imagine you have expressed displeasure about your recent flight experience
over Twitter by tagging the flight's official Twitter account; efforts will be made to listen to
these concerns and reach out to customers personally to solve their problems. In addition to
that, they may also please their customers with more personalized offers.

In the future, this approach may be followed by all organizations to listen to their
customers' grievances or feedback on social platforms and reach out to customers with
good recommendations or offers, which might be beneficial to both parties.
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Emerging from the Web
New paradigms are evolving, such as Internet television replacing traditional television.
Those times are gone when people had to wait to see their favorite programs at a
predefined hour; instated people would wish to watch programs at a convenient time. Now
times have changed; we are watching episodes at a time convenient to us on the Internet.

This change in the mindsets of people made business houses redesign their business models
to increase their profits. For example, all the episodes of the Netflix series House of Cards
were released together, breaking away from the traditional approach of one episode a week,
which was a tremendous success and made other production houses follow suit.

The emergence of such business models is a result of the analysis of the viewing patterns of
people.

Another interesting aspect of the House of Cards series is that the producers of House of Cards,
Netflix, made use of big data analytics to analyze and understand the viewing patterns of
its large user base, came up with a story comprising all the ingredients that viewers would
love, and made a TV series. When it was released, the series was an instant hit.

This approach has made its way into other organizations to come up with more creations in
order to improve customer experience.

As a result of the aforementioned shift in the motivation of recommendations, the context of
recommendations is changing. Different people need different things at different times,
with different people. The following figure depicts what was explained earlier:
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A person going on a vacation with family might have a set of requirements that is
contradictory to the set of requirements for when the person is going on a vacation with
friends. Similarly, the same person may have different requirements at the same time in two
different places. For example, a person travelling for business purposes to many countries
might have different requirements, as per the local conditions. A person who is in a tropical
country may need cotton dresses, and the same person may need woollen dresses when in
cold countries. The difference in preferences is elaborated in the following figure, where we
can see different people, in different countries, with different people, at different times,
wearing different dresses:

The futuristic recommender systems will continuously and actively listen to their users to
cater to their requirements on the go.

Next best actions
Another type of futuristic recommender system would be the systems that are sophisticated
enough to predict your next move and make relevant suggestions without you asking
explicitly.

TARS, from the movie Interstellar, could be a reality soon, which may suggest the next best
actions a human should take by considering all the information surrounding the person.
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Though TARS would be the most sophisticated system, humanoid robots, which are
already a reality, might work as the first-generation next-best-action prediction agents.

Use cases to look out for
In this section, we will list a few promising use cases that might make you more interested
in future of recommendation engines. Let's look at some good use cases for ubiquitous
futuristic recommendations.

Smart homes
IoT and recommender systems together form a very powerful combination to bring about
futuristic recommendation engines. A fully digitized smart home would be the best use
case, where in the future, your refrigerator may suggest your monthly grocery list on your
mobile while you are at work, as in following image. Similarly, IoT-enabled
recommendation engines are something to be watched out for in the future:

Pic credits: http://walyou.com/smart-home-gadgets/
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Healthcare recommender systems
Healthcare recommender systems form one of most exciting areas we have to watch out for.
Researchers are focusing on how we can bring personalized healthcare to common people
using advanced analytics. For instance, researchers at the University of Notre Dame have
developed a system called Collaborative Assessment and Recommendation Engine
(CARE), which uses a simple collaborative filtering that finds similar patients based on
similarity of symptoms and generates probable risk profiles for individuals.

Consider the case of Proteus Digital Health Company, which uses an IoT-enabled device, an
ingestible sensor, to track medical adherence. The device detects medication intake, tracks
physiological data, and alerts the patient if he has skipped the tablet by mistake.

News as recommendations
If you observe Google News, you can see that a recommendation engine is working behind
the scenes, continuously monitoring your click patterns, and combined with what is
trending around you, a content-based personalized recommendation engine starts
recommending news tailored for you:
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Taking a leaf from this application's book, many new companies, such as Reddit and Rigg,
among others, are using recommendation engines to suggest news items or articles as
recommendations.

Popular methodologies
In earlier chapters, we have seen various recommendation engines. In this section, we touch
upon a few popular methodologies, which are actively been employed in building
recommendation engines for improving the robustness and relevance of the
recommendations, such as:

Serendipity
Temporal aspects
A/B testing
Feedback mechanism

Serendipity
One of the drawbacks of recommendation engines is that the recommendation engine will
push us to a corner where the items to be suggested or discovered will be entirely based on
what we have looked for in the past or what we are currently looking for:

Credits: neighwhentheyrun
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They work just the way horse blinkers work: they protect the horse from getting distracted
from their path. The more interactions we have on the website, the narrower and closer to
the users' profiles the recommendations tend to be. Is this wrong? No, absolutely not, but
this is not how life works. If we turn back, most of the best discoveries of the past were
made by chance. Surprises add spice to one's life. The amount of joy we get when we
unexpectedly find something we need cannot be expressed in words. This feature is missing
in the current paradigm of accuracy-oriented recommender systems.

By introducing serendipity and surprise to our recommender systems, we can reduce the
aforementioned limitation. How do we introduce serendipity in the recommender systems?

Google News, before generating personalized news-article recommendations, will combine
the trending news within a region or country. This enables users to get more news, which is
trending around them, and they will also become interested in such news.

Temporal aspects of recommendation
engines
Consider the following scenario: a lady purchases items or looks for items related to
pregnancy for almost 9 months. After the delivery of the baby, she will start looking for
items related to a newborn. Our recommendation engines should be intelligent enough to
capture this information, and as soon as the lady starts looking for items for newborns, the 
recommendation engine should remove the recommendations related to pregnancy as they
are no longer relevant.

The following image shows how the non-inclusion of temporal aspects of recommendation
engines still recommends romantic books to a recently-turned monk:
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Our choices are very time-specific; we may not like the things that we like today in the
future. This aspect of time is often not considered while designing a recommendation
engine. Our recommender systems capture every interaction of the user and accumulate
large user preferences over a particular period. Since temporal information is inherent in
user preferences, it is reasonable for a data scientist to exploit the temporal information to
improve the relevance of the recommendation engine. A simple way of handling the 
temporal aspect is to give more weight to the most recent interactions, and less weight to
old interactions while generating recommendations.
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A/B testing
What is the most important thing for any data scientist? The accuracy of the machine-
learning model we have built to solve the problem at hand. How do we ensure whether the
model is right or not? We usually perform evaluation metrics, most likely the cross-
validation approach and error/evaluation metrics while building the model, to check model
accuracy before deploying the model to production. Though we apply best practices while
building a model, such as RMSE, precision-recall and cross-validation approaches, which
you learned about in previous chapters, are evaluated on historical data. Once the model is
deployed in production, only then do we come to know how good the model's performance
is. Usually, there isn't a single solution for a problem.

While designing a recommendation engine, we should always keep in mind the following
things:

A way to evaluate the model's performance at real time
Always use multiple models for generating recommendations, and choose the
model best suited for the user groups

The following shows how a simple A/B testing mechanism can be deployed in a production
scenario:

A/B testing comes to the rescue. In A/B testing, different sets of recommendations will be
sent to different sets of users, and the performance of the recommendations will be
evaluated at real time over a period. Though costly, A/B testing is an effective testing
method to evaluate models in real time.
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Feedback mechanism
Having spoken about A/B testing evaluating the performance of the recommender systems
at real-time, it is very important to design the recommender systems to include a feedback
mechanism. This is done to send back to the user interactions on the recommendations
generated to fine-tune the model features included during model creation.

One simple approach to include the feedback mechanism is discussed as follows:

Recall the content-based approach we used to generate recommendations. In the content-
based approach, all the features are given equal weight. But we should be aware that not all
features will be contributing equally to the recommendation model. To increase the
accuracy of the model, we should enable a mechanism to calculate feature weights.
Introduce a feedback mechanism to capture the user interactions on the recommendations,
and then use this information to build a classification model to calculate the model feature
weights.

Summary
In this chapter, we saw how recommendation engines are evolving and the motivations that
are affecting the evolution of recommender systems, followed by a few potential use cases
to watch out for. Finally, we touched upon some good methodologies, which should be
considered before designing a recommender system. With this input, I'm sure that you are
now equipped to confront the requirements of building future-ready recommendation
engines which are self-learning, scalable, real-time, and futuristic. As mentioned in this
chapter, deep learning can play a very important role in building more futuristic
recommender systems.
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